Kategorien
Aktuelle Tests & Specials auf Hardware-Inside Prozessoren

AMD RYZEN 5 2600,2600X & 7 2700X im Kurz-Test vs. Intel Core i7-8700K

Vor über zwei Monaten veröffentlichte AMD die verbesserte RYZEN-Architektur Zen+. Diese kommt in einer kleineren Fertigung und leichten Verbesserungen, im Vergleich zum Vorgänger, daher. Statt 14 nm setzt AMD jetzt auf eine Fertigung in 12 nm. Dank der Verbesserungen, sind unter anderem auch höhere CPU-Taktraten möglich. Wir schauen uns in diesem Test AMDs Prozessoren RYZEN 5 2600, 2600X und 7 2700X an. Neben den synthetischen- und Spiele-Benchmarks, werden wir uns auch die maximale Taktfrequenz mit und ohne OC sowie den Stromverbrauch anschauen.

[​IMG]
Wir bedanken uns bei AMD für die Bereitstellung des Testsamples und die gute Zusammenarbeit.​

Lieferumfang:

[​IMG] [​IMG]

Die Verpackung der neuen RYZEN-Modelle hat sich im Vergleich zum Vorgänger nicht verändert. Auch ist gut zu erkennen, um welches RYZEN-Modell es sich handelt. Entweder finden wir eine 5 oder 7 in der unteren rechten Ecke, was für RYZEN 5 oder RYZEN 7 steht. Somit erkennen wir, in welcher Verpackung ein Sechs- oder Achtkerner steckt. Auch erkennen wir, dass neben dem Prozessor, auch ein Boxed-Kühler zum Lieferumfang gehört.

[​IMG] [​IMG]

In der Verpackung, finden wir neben dem Prozessor, den Boxed-Kühler. Hier gibt es allerdings unterschiedliche Kühler. Der Wraith Stealth liegt dem RYZEN 5 2600, der Wraith Spire dem Ryzen 5 2600X und der Wraith Prism dem RYZEN 7 2700X bei.

[​IMG] [​IMG]

Nicht nur die Größe der CPU-Kühler ist unterschiedlich, sondern auch das eingesetzte Material. Im Vergleich zum Wraith Stealth, der vollständig aus Alu besteht, verfügt der Wraith Spire über eine Bodenplatte aus Kupfer und ist etwas höher. Die Lüfter der Wraith Stealt und Spire scheinen die gleichen zu sein. Deutlich besser sieht die Konstruktion des Wraith Prism aus. Dieser bietet eine noch größere Bodenplatte aus Kupfer und darüber hinaus leitet er die Wärme von der Bodenplatte, über Heatpipes, zu den Alufinnen im oberen Teil des CPU-Kühlers. Auch der Aufbau des Lüfters sieht anders aus. Die Lüfter des Wraith Stealth und Spire haben fünf Lüfterblätter, der Prism verfügt über sieben Lüfterblätter.

Details:

[​IMG] [​IMG]

Nicht nur das Fertigungsverfahren wurde von 14nm auf 12nm verbessert, sondern auch die Latenzzeiten des Cache und die IPC (Leistung pro Takt) des Prozessors wurden optimiert. Die höchste Leistungssteigerung soll, laut Folien von AMD, die Latenz des L2-Caches erfahren haben.

[​IMG] [​IMG]

Aber nicht nur die Latenzzeiten des Caches sind verbessert worden, sondern auch der Precision- und XFR-Boost. Dementsprechend erhalten sie jetzt die Bezeichnung Precision-Boost-2 und XFR-Boost-2. Es ist dank dieser Verbesserungen sogar möglich, mit einer niedrigen CPU-Temperatur, deutlich höhere CPU-Taktraten zu erreichen. Des Weiteren sollen beide Boost-Features auch genauer sein und die Taktung von einzelnen Kernen ist jetzt, wie bei Intel, auch möglich. So kann in der Theorie ein Kern mit 4,3 GHz takten und die restlichen mit 4,1 GHz. Wie hoch die Taktraten wirklich sind, schauen wir uns in der Praxis an. Allerdings steigt, zumindest beim Top-Modell, dem RYZEN 7 2700X, auch die TDP auf 105 Watt an. Des Weiteren hat auch nur das Top-Modell noch einen Temperatur-Offset, welcher 10° Celsius beträgt. Somit wird bei einer realen CPU-Temperatur von 50° Celsius ein Wert von 60° Celsius angezeigt. Dementsprechend dreht der Lüfter auf dem CPU-Kühler auch etwas höher. Dadurch ist wiederum ein höherer CPU-Takt durch den Boost möglich.

[​IMG] [​IMG]

Alle RYZEN-Modelle, mit Pinnacle-Ridge-Architektur sind wie die Vorgängermodelle zwischen DIE und Heatspreader verlötet und übertragen dementsprechend gut die Temperaturen an den Heatspreader. Auf die Temperaturen werfen wir im Praxisteil noch einen genauen Blick.

Praxis:

Testsystem AMD
[​IMG]

Alle RYZEN-CPUs werden auf einem ASUS CROSSHAIR VII HERO verbaut. Beim Arbeitsspeicher handelt es sich um ein 16-GB-Kit von GEIL. Gekühlt werden die CPUs von einem MSI CORE FROZR XL. Bei der Gehäusebelüftung setzen wir auf insgesamt sieben Lüfter von Noiseblocker.

Testsystem Intel
[​IMG]

Im INTEL-Testsystem verbauen wir, neben einem Core i7-8700K, ein ASUS MAXIMUS X HERO. Ansonsten ist das INTEL-Testsysten zu dem AMD-Testsystem identisch.

OC-Ergebnisse

[​IMG]

AMDs RYZEN 5 2600 können wir auf 4,1 GHz übertakten. Dabei liegt die CPU-Spannung bei 1,306 Volt. Selbst mit den Erhöhen der CPU-Spannung auf 1,45 Volt, können wir keinen CPU-Takt von 4,2 GHz stabil erreichen. Die Temperaturen sind, dank des guten CPU-Kühlers, nicht zu hoch.

[​IMG]

Mit einer CPU-Spannung von 1,352 Volt, erreichen wir beim RYZEN 5 2600X einen CPU-Takt von 4,2 GHz. Auch hier erreichen wir trotz einer CPU-Spannung von 1,45 Volt keinen höheren CPU-Takt. Die CPU-Temperatur liegt bei maximal 70° Celsius.

[​IMG]

Wie auch beim RYZEN 5 2600X, erreichen wir mit dem RYZEN 7 2700X, einen maximalen CPU-Takt von 4,2 GHz. Allerdings benötigen wir bei einer CPU-Spannung von 1,308 Volt, etwas weniger Spannung als beim Sechskerner. Die CPU-Temperatur liegt bei maximal 67,4° Celsius.

Benchmark-Ergebnisse

Boost-Taktraten

[​IMG]

Bevor wir uns die Benchmark-Ergebnisse anschauen, werfen wir einen Blick auf die CPU-Taktraten. Diese Unterscheiden sich je nach Prozessor deutlich. So hat der INTEL Core i7-8700K den höchsten CPU-Takt in Anwendungen und Spielen. Der RYZEN 5 2600X taktet in der Praxis etwas höher als der RYZEN 7 2700X. Beim RYZEN 5 2600X beträgt der maximale CPU-Takt, den wir gemessen haben, sehr gute 4150 MHz im Spiel. In Cinebench liegt er mit 4166 MHz etwas höher, allerdings wird der Prozessor auch deutlich weniger beansprucht und kann dadurch dem Takt eines CPU-Kerns etwas mehr erhöhen. Das Gleiche gilt für den RYZEN 7 2700X, der in Cinebench einen maximalen CPU-Takt von 4244 MHz hat und im Spiel maximal 4125 MHz und somit zumindestens im Spiel dem kleineren RYZEN 5 2600X hinterhinkt. Der RYZEN 5 2600 hat den geringsten CPU-Takt. In Cinebench beträgt er maximal 3894 MHz und im Spiel 3775 MHz.

Temperaturabhängige Boost-Taktraten

[​IMG] [​IMG]

Da die CPU-Taktraten temperaturabhängig sind, werfen wir auch einen Blick auf das Taktverhalten der CPU mit unterschiedlichen CPU-Temperaturen. Mit 56,8° Celsius taktet der Prozessor unter Volllast mit 3742 Mhz. Bei einer CPU-Temperatur von 70,3° Celsius liegt der CPU-Takt bei nur noch 3661 MHz und somit ist die Frequenz 80 MHz niedriger als mit der zuvor gemessenen Temperatur.

AIDA 64 Cache und Speicher-Test

[​IMG]

Als nächstes schauen wir uns die Geschwindigkeit des Speichers und Caches an. Dabei schauen wir hauptsächlich auf die Cache-Geschwindigkeit, da die Speichergeschwindigkeit stark vom verwendeten Arbeitsspeicher abhängt. Da der L1-Cache im CPU-Kern liegt, ist hier die Geschwindigkeit, mit maximal gemessenen 703,35 GB/s am höchsten. Die Geschwindigkeit des L2-Cache beträgt sehr schnelle 687,99 GB/s, da er auch im CPU-Kern sitzt. Der L3-Cache ist durch die höhere Distanz, zu den CPU-Kernen, etwa halb so schnell als der L2-Cache und liegt bei einer Bandbreite von 388,37 GB/s. Beim genaueren Betrachten der Werte sehen wir, dass sich die Bandbreiten beim Lesen, Schreiben und Kopieren nicht allzu sehr unterscheiden. Die Latenzen liegen beim L1-Cache bei 1.0 ns, beim L2-Cache bei 3.2 ns und beim L3-Cache bei 10 ns.

[​IMG]

Durch das Übertakten der CPU-Kerne, steigt natürlich auch die Geschwindigkeit des L1-, L2- und L3-Cache. Die Latenzen sinken auch etwas. Den größten Unterschied sehen wir beim L3-Cache.

[​IMG]

Durch den höheren CPU-Takt, liegt die Geschwindigkeit des L1-, L2- und L3-Caches des RYZEN 5 2600X, etwas höher als beim RYZEN 5 2600. Sie liegt etwa gleichauf mit den Ergebnissen des RYZEN 5 2600 mit einem CPU-Takt von 4,1 GHz. Allerdings ist das auch nicht verwunderlich, da der RYZEN 5 2600X von Haus aus mit einem CPU-Takt von bis zu 4,2 GHz läuft. Die Latenzen liegen durch den etwas höheren CPU-Takt etwas niedriger.

[​IMG]

Der erste Vergleich, mit und ohne OC des RYZEN 5 2600X, zeigt, dass wir durch das Übertakten nicht allzu viel Leistungssteigerung erwarten können. Die Ergebnisse sind ziemlich gleich. Allerdings liegt der CPU-Takt von 4,2 GHz mit OC auf allen Kernen konstant an. Ohne OC kann das anders aussehen.

[​IMG]

Da der RYZEN 7 2700X über zwei CPU-Kerne mehr verfügt, als der RYZEN 5 2600 und 2600X, ist die Geschwindigkeit des L1- und L2-Caches höher. Das ist nicht ungewöhnlich, da der L1- und L2-Cache in den ZEN-Kernen selbst liegt. Der L3-Cache liegt außerhalb und daher gibt es hier keine Unterschiede bei der Geschwindigkeit. Die Bandbreite des L1- und L2-Cache ist über 200 GB/s schneller als bei den Sechskernern.

[​IMG]

Durch das Übertakten des RYZEN 7 2700X steigt natürlich auch die Bandbreite des L1-, L2- und L3-Cache des Achtkerners an. Durch den hohen CPU-Takt, den der RYZEN 7 2700X von Haus aus hat, ist der Unterschied durch das Übertakten allerdings nicht sehr hoch.

[​IMG]

Zusätzlich zu den RYZEN-Prozessoren testen wir auch INTELs Core i7-8700K. Im Vergleich zu den RYZEN-Prozessoren, ist der L1-Cache deutlich schneller. Der L2- und L3-Cache ist allerdings etwas langsamer.

[​IMG]

Mit OC liegt die Geschwindigkeit von L1-, L2- und L3-Cache wie bei den AMD CPUs etwas höher.

[​IMG]

Die Ergebnisse in Cinebench, sprechen ganz klar für den AMD RYZEN 7 2700X. Der INTEL Core i7-8700K legt mit OC deutlich zu und kommt dem AMD RYZEN 7 2700X näher wie ohne OC. Die Single-Core-Ergebnisse profitieren des Weiteren sehr stark von dem höheren CPU-Takt des i7-8700K. Aber auch die Ergebnisse der RYZEN-5-Prozessoren können sich sehen lassen. Vor allem der RYZEN 5 2600 liegt im Preis-/Leistungsverhältnis ganz vorne. Das wird mit OC noch mal deutlicher, da er standardmäßig einen niedrigeren CPU-Takt hat und dementsprechend mehr an CPU-Takt dazu legt.

[​IMG]

In Battlefield 1 zeigt sich, das INTEL mit dem Core i7-8700K mit drei bis sechs Prozent leicht vorne liegt. Die Differenz zwischen den RYZEN-Prozessoren ist allerdings nicht so hoch. Nur der RYZEN 5 2600 hinkt mit 106,4 FPS ohne OC etwas hinterher. Allerdings werden die wenigsten Gamer diesen Unterschied beim Spielen bemerken. Mit OC legen alle Prozessoren etwas an Leistung zu. Wir erkennen also, dass sich das OC, dank der hohen Boost-Taktraten, in Battlefield 1 kaum lohnt.

[​IMG]

Erstaunlich ist, dass die Leistung des Core i7-8700K, in F1 2016 so deutlich vorne liegt. Ohne OC liegt der i7-8700K knappe 21 Prozent vorne und mit OC sogar fast 31 Prozent. Die Unterschiede zwischen den RYZEN-Prozessoren ist wie bei Battlefield 1 nicht wirklich groß. Hier liegt der RYZEN 5 2600 wieder durch den niedrigeren CPU-Takt zurück. Mit OC sieht das allerdings anders aus. Wir können auf jeden Fall feststellen, dass wir keinen Vorteil, mit einem acht Kerner gegenüber eines sechs Kerners in F1 2016 haben.

[​IMG]

Playerunknown`s Battlegrounds profitiert nur etwas von dem CPU-Takt. Das sehen wir daran, das der Core i7-8700K leicht vorne liegt und der RYZEN 5 2600 mt 10 FPS Differenz deutlich hinterher hängt. Mit OC schließt er allerdings zu den anderen Prozessoren auf, daher hat er den meisten Leistungsgewinn durch das Übertakten.

[​IMG]

Mit 4 FPS Unterschied zwischen RYZEN 5 2600 und Core i7-8700K, erkennen wir, dass der Prozessor nicht so eine große Rolle in Rise of the Tomb Raider spielt. Daher ist mit OC auch nicht wirklich ein Leistungsunterschied zu erkennen.

[​IMG]

War Thunder profitiert, neben F1 2016, am meisten von einem hohen CPU-Takt. Daher liegen die Frameraten mit einem Core i7-8700K auch deutlich höher als bei dem schnellsten RYZEN-Prozessor. Mit OC sind es sogar über 40 FPS mehr. Mit einem 144-Hertz-Monitor sind diese Unterschiede von einem Gamer zu erkennen, da das Spiel schneller auf die Eingabe reagiert. Das Übertakten der RYZEN-Prozessoren lohnt sich bei War Thunder mehr als bei Battlefield 1 oder Playerunknown´s Battlegrounds. Das meiste Potenzial liegt hier wieder beim RYZEN 5 2600, der bis zu 7,3 FPS mehr Leistung mit OC erzielt.

Stromverbrauch:

[​IMG]

Den durchschnittlich geringsten Stromverbrauch, in den ausgewählten Testszenarien, hat AMDs RYZEN 5 2600. Dieser wird dicht gefolgt von INTELs Core i7-8700K, der im IDLE sogar etwas weniger Strom verbraucht. Allerdings liegt der Stromverbrauch beim i7-8700K unter Volllast und in BF1 am höchsten. Für einen acht Kerner hat der RYZEN 7 2700X allerdings auch einen guten Stromverbrauch. Des Weiteren müssen wir beachten, dass es sich auch bei den RYZEN 5 Modellen, um Teildeaktivierte acht Kerner handelt und somit immer etwas Strom durch die deaktivierten Kerne fließt. Daher sind vor allem die gemessenen Werte unter Volllast in unseren Augen sehr gut. Mit OC steigt der Stromverbrauch aller Prozessoren an. Im Vergleich zu den RYZEN-Prozessoren steigt beim INTEL Core i7-8700K der Stromverbrauch am deutlichsten. Aber auch der RYZEN 5 2600 legt etwas mehr zu als der RYZEN 5 2600X und RYZEN 7 2700X.

Fazit:

AMD liefert mit der verbesserten ZEN+ Architektur, die in den RYZEN 5 2600, 2600X und RYZEN 7 2700X zum Einsatz kommt, ein solides Produkt. Dass vor allem für Spiele, Streaming und Foto/Video-Bearbeitung eine sehr gute Alternative zu den INTEL Coffee-Lake-CPUs ist. Auch wenn INTEL bei Spielen noch vorne liegt, kann AMD mit einem guten Preis Punkten. Des Weiteren zeigt der AMD RYZEN 7 2700X eine sehr gute Leistung in Multi-core-Anwendungen. Die OC-Eigenschaften sind allerdings nicht so gut. So können wir nur beim RYZEN 5 2600 mit OC eine bessere Leistung in Spielen erzielen. Einzigst ist der Cinebench R15 Benchmark, der von allen CPU-Kernen die maximale Performance fordert. Daher kann der Boost-Modus der RYZEN-Modelle, mit einem X in der Produktbezeichnung, nicht den maximalen CPU-Takt einstellen. In Spielen arbeitet der Boost-Modus allerdings so gut, dass wir uns das Übertakten sparen können. Der Stromverbrauch der RYZEN-Prozessoren ist gut. Im Vergleich mit dem Core i7-8700K, der in Spielen eine bessere Leistung abliefert, ist die Leistung pro Watt allerdings etwas schlechter. Da der RYZEN 5 2600 in Battlefield 1 circa 25 Watt weniger benötigt als der RYZEN 5 2600X und RYZEN 7 2700X, hat er eine etwas bessere Leistung pro Watt als seine Geschwister. In Cinebench R15 liefert AMDs RYZEN 7 2700X die beste Leistung pro Watt. Die Preis/Leistung ist bei allen RYZEN-Modellen sehr gut. Wir bekommen mit dem RYZEN 5 2600 für unter 170€ einen Prozessor mit sechs Kernen und zwölf Threads. Das gibt es bei INTEL erst ab dem Core i7-8700K, der mehr als das Doppelte kostet. Möchten wir einen etwas höheren CPU-Takt, so bekommen wir für 20€ mehr den RYZEN 5 2600X. Dieser kann, im Vergleich zum RYZEN 5 2600, vor allem in Spielen durch seinen höheren CPU-Takt glänzen. Allerdings ist diese Leistung auch mit dem RYZEN 5 2600 möglich, wenn wir übertakten. In Anbetracht, dass es sich beim RYZEN 5 2700X um einen echten acht Kerner mit sechszehn Threads handelt, ist die Preis/Leistung auch hier hervorragend. Da es bei INTEL keinen Mainstream acht Kerner gibt, müssen wir bei INTEL für einen Achtkerner 460€ bezahlen und müssen zusätzlich noch zu einem teureren X299-Mainboard greifen. Bei AMD liegt das günstigste X470-ATX-Mainboard bei 130€ und somit 50€ unter dem günstigsten X299-Mainboard. Des Weiteren müssen wir berücksichtigen, dass bei allen RYZEN-Modellen ein CPU-Kühler beiliegt. Vor allem beim RYZEN 7 2700X, liegt ein sehr potenter Boxed-Kühler bei, den wir leider aus Zeitgründen nicht testen konnten.

[​IMG]

Bewertung des AMD RYZEN 5 2600

Wir vergeben dem AMD RYZEN 5 2600 9,2 von 10 Punkten. Da eine gute Preis Leistung geboten wird , erhält der AMD RYZEN 5 2600 von uns den „Preis Leistung“ Award.

Pro:
+ Leistung in Spielen
+ OC-Potenzial vorhanden
+ 12-Threads
+ Verlöteter Heatspreader
+ Stromverbrauch
+ sehr guter Preis

Kontra:

– CPU-Takt

[​IMG]

Produktlink
Preisvergleich

Bewertung des AMD RYZEN 5 2600X

Wir geben dem AMD RYZEN 5 2600X 9,4 von 10 Punkten. Da eine gute Preis Leistung geboten wird , erhält der AMD RYZEN 5 2600X von uns den „Preis Leistung“ Award.

Pro:

+ Leistung in Spielen
+ 12-Threads
+ Verlöteter Heatspreader
+ sehr guter Preis
+ CPU-Takt mit Boost-Modus

Kontra:

– Kaum OC-Potenzial


[​IMG]

Produktlink
Preisvergleich

Bewertung des AMD RYZEN 7 2700X

Wir vergeben dem AMD RYZEN 7 2700X 9,5 von 10 Punkten. Da eine gute Preis Leistung geboten wird , erhält der AMD RYZEN 5 2600 von uns den „Preis Leistung“ Award

Pro:

+ Leistung in Spielen
+ Leistung in Foto/Video-Bearbeitung
+ 16-Threads
+ Verlöteter Heatspreader
+ Stromverbrauch in Foto/Video-Bearbeitung

Kontra:
Kaum OC-Potenzial

Produktlink
Preisvergleich

Kategorien
Der Tag im Überblick: Alle Meldungen

AMD Ryzen 5 2400G übertrifft Intels Core i5-8400 in iGPU Leistung

AMD setzt große Hoffnungen auf seine kommende Ryzen 2000G „Raven Ridge“ Desktop APU-Familie, die eine Quad-Core „Zen“ CPU mit einer größer integrierten GPU auf Basis der neuesten „Vega“ Architektur kombiniert. Während Intels iGPU-Design-Fokus bei den „Coffee Lake-S“-Prozessoren weiterhin auf hardware-beschleunigte 4K-Videowiedergabe und Nicht-Gaming-Aufgaben ausgerichtet ist, verspricht AMD eine gesündere Lösung. Die integrierte Radeon Vega 11 Grafik des Ryzen 5 2400G verfügt über 11 „Vega“ NGCUs (Next-Generation-Compute-Units), was 704 Stream-Prozessoren, 44 TMUs (@ 4 TMUs pro NGCU), 8 oder 16 ROPs und einen bandbreitenreichen Pfad zu den zweikanaligen DDR4-2933 Steckplätzen.

In der Pre-Launch-Pressemitteilung für den Ryzen 3 2200G und den Ryzen 5 2400G hat AMD einen ähnlich preiswerten Intel Core i5-8400 Sechskern-Prozessor (UVP: $189) mit seinem schnelleren Ryzen 5 2400G (UVP: $169) verglichen. Im AMD-Test hält die Radeon Vega 11 iGPU die Bildraten bei 1080p deutlich über 30 fps. In wichtigen populären Titeln wie „Battlefield 1“ übersteigen die Bildraten 50 fps, Titel wie „Overwatch“ und „Rocket League“ sind fast so schnell. „Skyrim“ nähert sich 96 fps, während „The Witcher 3“ knapp über 30 fps bleibt. Der i5-8400 mit seiner UHD 620-Grafik erreicht mit 1080p kaum die 30 fps-Marke in jedem der Spiele. AMDs Ryzen 5 2400G Prozessoren scheinen somit in der Lage zu sein, die meisten eSports-Titel mit Auflösungen von über 1600 x 900 zu betreiben, was insbesondere iCafes und Gamer mit einem überschaubaren Budget interessieren dürfte.

AMD Ryzen 5 2400G Smokes Core i5-8400 at iGPU Performance

Kategorien
Der Tag im Überblick: Alle Meldungen

AMD Ryzen 5 1600 und 1600X CPUs mit 8 Kernen entdeckt

Im Web tauchten kürzlich Berichte auf, denen zufolge einige Besitzer der AMD Ryzen 5 1600 und 1600X Serie eine unerwartete Anzahl an Prozessorkernen aufwiesen. Die erwartete Kernzahl dieser Prozessoren liegt bei sechs Kernen und zwölf Threads, doch scheinbar liegt diese Anzahl höher. Tatsächlich werden sie mit acht Kernen und 16 Threads ausgeliefert. Um jene Kerne jedoch freischalten zu können, bedarf es speziellen BIOS-Einstellungen. Die Prozessoren behalten ihre angegebenen Taktraten und das 576kb L1-Cache. Aber mit den zusätzlichen Kernen kommen die Prozessoren der 1600er Serie den entsprechenden Ryzen 7 1800 Series CPUs sehr nahe. Gerade im Vergleich des Aufpreises gegenüber eines AMD 1800X.

Ein weiterer Anhaltspunkt dieser Neuigkeit ist, dass auch jene Ryzen 5 Prozessoren aus der gleichen Charge zwischen dem 4.09 und 10.09 in Malaysia auf Silizium-Basis hergestellt wurden.

Ein Grund für diesen Schachzug könnte sein, dass AMD seinen Bestand an Ryzen 5 1600 und 1600X CPUs ausweiten will, um der höheren Nachfrage an Mittelklasse-Chips gerecht zu werden, indem das Unternehmen 1800 und 1800X CPUs als 1600 und 1600X ausgibt. Was auch immer der Grund ist, es ist definitiv eine willkommene Überraschung für glückliche AMD Benutzer. Wenn ihr bereits vor kurzem einen Ryzen 5 1600 oder 1600X gekauft habt, kann eine Überprüfung über CPU-Z Gewissheit schaffen, ob ihr Empfänger eines freigeschalteten Chips seid.

Quelle: AMD Ryzen 5 1600 and 1600X CPUs Found With 8 Working Cores

Kategorien
Aktuelle Tests & Specials auf Hardware-Inside Mainboards

Biostar Racing X370GT5 im Test

Der Mainboard und Grafikkarten Hersteller Biostar ist vielen nicht so bekannt. Sie bieten einige der Preis-Günstigsten AM4 Mainboards mit X370 Chipsatz an. Heute schauen wir uns das 130€ Mainboard was genauer an und schauen, wo das Biostar Racing X370GT5 glänzen kann. Soviel sei verraten, es gibt hier und da eine Überraschung. Welche das genau sind, seht ihr auf den nächsten Seiten.

[​IMG]

Vielen Dank an unseren Partner BIOSTAR für das in uns gesetzte Vertrauen und die Bereitstellung des Samples.

Verpackung und Lieferumfang:

[​IMG]

Die Verpackung des Racing X370GT5 kommt in einem Carbon Look daher und es ein schnell vorbei fahrendes Auto abgebildet. Mittig ist zu erkennen um welches Mainboard es sich genau handelt. Das Biostar Logo finden wir in der oberen linken Ecke und in der unteren rechten Ecke sehen wir das hier ein X370 Chipsatz zum Einsatz kommt. Für World of Tanks Spieler wird der obere rechte Aufkleber interessant sein. Damit erhält man einen Premium Account, einen exklusiven Panzer und Ingame Gold Währung von WOT.

[​IMG]

Auf der Rückseite finden wir wie bei allen Herstellern genauere Spezifikationen und Features die das Board bietet. Darunter haben wir zum Beispiel das Dual Bios, VIVID LED DJ und GT Touch. Was uns die Features genau bieten, sehen wir später.

[​IMG]

Das Mainboard selber hat ein schwarzes PCB mit einer weißen Fahne drauf. Auf dem Chipsatz Kühler und dem Soundchip erkennen wir die Mainboard Serie Racing. Es ist auch ein kleiner MOSFET Kühler verbaut.

[​IMG]

Im Lieferumfang befindet sich:

– Bedienungsanleitung
– Treiber CD
– 4x SATA Kabel
– RGB LED Lüfter
– I/O Blende

[​IMG]

Sehr überrascht waren wir von dem im Lieferumfang enthaltenen RGB LED Lüfter. Dieser bietet einen 4-Pin PWM und Molex Anschluss und einen 4 Pin RGB LED Anschluss. Mit letzterem werden die LEDs betrieben. Dieser kann am Mainboard angeschlossen werden und bietet uns vollen Umfang in der Steuerung der LEDs.

Details:

[​IMG]

Wir schauen uns das Racing X370GT5 im Detail an. Dazu werfen wir als Erstes einen Blick auf die Stromversorgung.

[​IMG] [​IMG]

Passiv mit einem Kühlkörper gekühlt werden nur die MOSFETs die für die CPU Kerne zuständig sind, die Wandler die für den SOC zuständig sind haben keinen Kühler. Der hier eingesetzte PWM Controller von Intersil kann 4 Phasen für die CPU Spannung und 3 Phasen für die SOC Spannung steuern und dem entsprechend bietet das Board insgesamt 7 Phasen. Biostar verwendet hier MOSFETs von der Firma Sinopower. Eingesetzt werden hier MOSFETs mit der Bezeichnung SM4364A und  SM4377N. Diese dürfen maximal 150°C warm werden. Ob diese ausreichen für eine stabile Spannung und wie heiß sie werden, sehen wir im weiteren Verlauf.

[​IMG]

Das Biostar Mainboard bietet für die Grafikkarte einen PCIe 3.0 x16 Steckplatz. Der zweite x16 Steckplatz ist PCIe 2.0 mit einer maximalen Anbindung von x4. Des weiteren stehen uns zwei PCIe 2.0 x1 und zwei PCI Slots zu Verfügung. Unter dem CPU Sockel können wir eine M.2 SSD einstecken. Die maximale Bandbreite liegt hier bei 32Gb/s. Ganz unten am Mainboard sehen wir den Bios Switch und die zwei USB 2.0 und zwei USB 3.1 Anschlüsse für das Frontpanel.

[​IMG]

Insgesamt stehen für uns sechs SATA Ports bereit, das dürfte für die meisten Nutzer reichen.

[​IMG]

Erstaunlicherweise bietet uns die Hauptplatine auch ein Touchpad, auf dem wir den Computer starten oder reseten können. Hier wird uns auch angezeigt, wenn der ECO oder Sport Modus aktiv ist.

[​IMG]

Am I/O Shield befinden sich ein PS2, vier USB 3.1 Gen1 Type-A, ein USB 3.1 Gen2 Type-A und ein USB 3.1 Gen2 Type-C zu Auswahl. Desweiteren haben wir sechs Klinkenanschlüsse, einen Lan und einen HDMI sowie einen DVI-D Anschluss.

Praxis:

Um euch das Bios des X370GT5 zu veranschaulichen, haben wir euch ein Video erstellt. Da das Bios etwas umfangreicher ist, sagt ein Video mehr aus wie Bilder. Das Bios ist etwas unstrukturiert. Zwar gibt es ein extra OC Menü, aber die Lüfter, deaktivieren der Kerne usw., müssen erstmal im Advance Menü gefunden werden. Die Lüftersteuerung funktioniert leider nur mit 4-Pin PWM Lüftern, mit unseren 3-Pin war keine Steuerung möglich und sie liefen konstant auf 100%. Eine Überraschung war die RGB LED Steuerung im Bios, dort können wir schon unsere Favorisierte Farbe für die LEDs auf dem Mainboard treffen.
Im OC Menü können wir unter P-State die CPU Frequenz anheben und die Spannungen erhöhen. Hier geht Biostar einen guten Weg und setzt auf ein Offset der Standart Spannung. Das hat den Vorteil das die Spannung im IDLE sinkt und wir so weniger Strom verbrauchen. Auch sehr überrascht waren wir von der Möglichkeit per BCLK Übertakten zu können. Zwar ist es nicht unbegrenzt möglich, aber immerhin können wir einen maximalen BCLK Wert bis 107.3MHz einstellen. Das bietet den Vorteil das wir den Arbeitsspeicher individueller einstellen können. Eine unbegrenzte Übertaktung per BCLK bieten sonst nur die deutlich teureren Boards wie zum Beispiel das Asus ROG Crosshair 6 Hero und das MSI X370 XPower Gaming Titanium.

Tool:

[​IMG] [​IMG]

Biostar bietet wie auch andere Hersteller ein eigenes Tool mit dem Namen Racing GT an. Hier finden wir einige Systeminformationen oder können die Lautstärke unserer Audioausgabe steuern.

[​IMG]

Sehr interessant ist auch die RGB LED Steuerung die direkt greift. Hier können wir verschiedene Farben des RGB Farbschemas abrufen oder bestimmte Effekte einstellen.

[​IMG] [​IMG] [​IMG]

Über der LED Steuerung kann noch der Energiesparmodus des Mainboards geändert werden. Wir testen diese und schauen was diese uns bringen. Das Ändern auf den Sport Modus bringt uns in diesem Fall keine zusätzliche Leistung und der Stromverbrauch bleibt gleich. Auf dem Mainboard leuchtet sobald ein Modus gewählt wird die dem entsprechende LED.

[​IMG] [​IMG] [​IMG]

Sobald wir den ECO Modus wählen leuchtet die ECO LED auf dem Mainboard. Durch den ECO Modus sparen wir Energie, bei uns sind es circa 50-60 Watt. Die Leistungsfähigkeit des Systems sinkt dadurch deutlich. Nachdem wir den ECO Modus wieder deaktiviert haben, kommt es zu Probleme und unser CPU möchte sich nicht mehr hochtakten. Selbst ein Neustart des Systems behebt den Fehler nicht. Erst nach abschalten des Stroms per Schalter am Netzteil hilft uns weiter. Dieses Problem gibt es auch beim deaktivieren von CPU Kernen im Bios. Sobald wieder alle Kerne aktiviert werden muss die Stromzufuhr des Netzteils für eine kurze Zeit getrennt werden.

[​IMG] [​IMG] [​IMG]

Im HW-Monitor können wir uns die Temperaturen und Spannungen des Systems genauer betrachten. Auch sehen wir die Lüfter Drehzahl und können diese sobald wir 4-Pin PWM Lüfter einsetzen auch steuern. Im untersten Menü können wir den Prozessor übertakten und die Spannungen im Untermenü OV ändern. Die getroffenen Einstellungen können gespeichert werden.

Übertakten:
Das Bios des Biostar Racing X370GT5 bietet, wie auch andere Mainboards, Optionen für das Übertakten des Prozessors und des Arbeitsspeichers. Beides testen wir natürlich ausgiebig. Es ist uns möglich den Ryzen7 1700X stabil auf 4GHz zu Übertakten, dafür benötigen wir 1.43 Volt. Wir testen mit Prime95. Damit ist die Abweichung zu den anderen getesteten Mainboards nicht wirklich groß. Wir versuchen auch den Speicher ,der mit 2400MHz von Werk aus läuft, auf 2933MHz zu takten. Leider ist es uns nicht möglich diese Taktraten zu erreichen, obwohl der Arbeitsspeicher auf anderen Hauptplatinen damit läuft. Selbst das ändern der Timings bringt keinen Erfolg. Das Problem könnte aber an dem Bios geschuldet sein und sich mit einem neuem Bios Update ändern.

[​IMG]

Um die maximale Temperatur der MOSFETs zu testen, starten wir für 15 Minuten Prime95. Hier messen wir die Oberflächen Temperatur des MOSFET Kühlers der für die CPU Kerne zuständig ist und die Temperatur der MOSFET die für die SOC Spannung benötigt werden. Bei letzterem setzt Biostar keinen Kühlkörper ein. Separat schauen wir uns auch den Mainboard Sensor der MOSFET an.

[​IMG]

Bei dem Standard Takt mit Turbo von 3,5GHz liegen 1.194 Volt an den CPU Kernen an und wir messen laut Mainboard Sensor unbedenkliche 86°Celsius. Der Kühlkörper liegt bei 64,4°C und die SOC Wandler sind bei 51,4°C.

[​IMG]

Wir haben den Takt jetzt auf 3,9 Gigahertz angehoben und haben eine Spannung von 1,276 Volt anliegen. Damit schreiten wir beim Mainboard Sensor schon über die 100°C Grenze. Hierbei sollte allerdings beachtet werden das die maximale Temperatur 150°C erreichen darf. Um so wärmer die MOSFET werden, desto ineffizienter werden diese. Das hat zu folge das mehr Strom benötigt wird und die Stromversorgung instabiler wird. Der CPU MOSFET Kühler wird 76,6°Celsius warm.

[​IMG]

Jetzt takten wir den Prozessor mit einer Spannung von 1.43 Volt auf 4GHz und reizen den Mainboard Sensor vollkommen aus. Ab 124°C wird er im HW-Monitor grau angezeigt und bleibt konstant bei der gleichen Temperatur. Damit raten wir jedem nicht mehr wie 1.35 Volt einzustellen um die Lebensdauer der MOSFET/Wandler nicht unnötig zu verkürzen. Der Kühler selber erreicht dabei heiße 97,6°C und jede Art von Berührung würde zu einer Verbrennung führen. Die SOC Wandler sind selbst ohne Kühler bei 63,2°C.

Benchmarks:
Um die Leistung des X370GT5 mit anderen AM4 Mainboards zu vergleichen, lassen wir zwei Benchmarks laufen. Wir wählen hier den Unigine Superposition und den Cinebench R15. Vorherige Tests der Speicher und Festplatten/SSD Geschwindigkeit, die wir bei anderen AM4 Mainboards durchgeführt haben, lassen wir hier aus. Es hat sich gezeigt das es dort keinen großen Unterschied gibt, auch gibt es beim SSD Benchmark je nach freien Speicherplatz andere Benchmark Ergebnisse. Da wir seit dem letzten Test etwas weniger freien Speicher haben, wäre jeglicher Test unfair gegenüber von Biostar.

[​IMG]

[​IMG]

Wie zu erwarten liegen die Ergebnisse der Mainboards sehr nah beieinander.

[​IMG]

Beim Cinebench R15 liegt die Leistung etwas höher wie beim MSI B350 Tomahawk und etwas hinter den X370 Platinen von Asus und MSI. Die Unterschiede sind aber nicht wirklich groß.

Stromverbrauch:

[​IMG]

Der Stromverbrauch der Biostar Hauptplatine liegt im IDLE etwas höher als bei der Konkurrenz, im Schnitt circa 4 Watt. Bei Vollauslastung des CPUs liegt der Verbrauch im Durchschnitt. Anders sieht es dann im Spiel War Thunder aus, hier schneidet das X370GT5 mit 369,9 Watt am schlechtesten ab und das obwohl es weniger Wandler hat wie die anderen X370 Mainboards.

Fazit:
Das Biostar Racing X370GT5 Mainboard ist aktuell für 130€ erhältlich und ist damit eines der günstigsten X370 Mainboards auf dem Markt. Dafür bekommen wir einiges geboten, wie zum Beispiel RGB LEDs, ein Touchpanel und eine schnelle M.2 Schnittstelle. Das Bios ist sehr umfangreich und ermöglicht uns dort sogar eine Steuerung der LEDs. Es war uns möglich den eingesetzten Ryzen7 1700X auf 4Ghz zu Übertakten. Insgesamt gibt es auch genügend USB Schnittstellen, wovon zwei USB 3.1 Gen2 sind. Erstaunlicherweise wird uns ein zweites Bios geboten in das wir, mit Hilfe eines Bios Switch, bei Problemen wechseln können.

Es gibt aber auch Negative Punkte. So war es uns nicht möglich die 3-Pin Lüfter zu steuern, dies ist nur mit 4-Pin PWM Lüftern möglich. Der zweite PCIe x16 Anschluss bietet nur x4 Geschwindigkeit und die Wandler wurden, mit einer Übertaktung des Prozessors auf 4GHz, sehr heiß . Das größte Problem gibt es mit der hauseigenen Software Racing GT. Sobald dort der Modus ECO eingestellt wird, muss beim Wechsel auf den Normal oder Sport Modus der PC komplett vom Strom getrennt werden. Das Racing X370GT erhält von uns 8.0 von 10 Punkten und damit vergeben wir den Silber Award.

[​IMG]

Pro:
+ Dual Bios
+ Preis-Leistung
+ Interne und I/O USB Anschlüsse
+ RGB LED Steuerung im Bios
+ Touchpanel

Contra:
– Nur 4 Spannungsphasen für CPU Kerne, werden sehr heiß bei OC
– Lüfter Steuerung nur mit 4-Pin PWM möglich
– Racing GT Software Fehlerhaft

[​IMG]

Herstellerseite
Preisvergleich

Kategorien
Der Tag im Überblick: Alle Meldungen

AMD veröffentlicht neuen hochleistungsstarken AMD Ryzen 5 Desktop-Prozessor

nach dem weltweiten Launch der erfolgreichen Ryzen 7 Desktop-CPUs im vergangenen März, veröffentlicht AMD heute alle vier Modelle seines neuen, extrem leistungsstarken AMD Ryzen 5 Desktop-Prozessors.

Diese richten sich insbesondere an Gamer und Designer weltweit – und ermöglichen sowohl immersive Spielerlebnisse als auch eine besonders hohe Arbeitsperformance in verschiedenen Preissegmenten. Im Vergleich zu Intels Aushängeschild 7600K (Core i5 Modell) bietet der AMD Ryzen 5 1600X etwa eine bis zu 87 Prozent höhere Leistung. Dank außergewöhnlicher Multitasking-Fähigkeiten, der AMD SenseMI-Technologie, sowie der leistungsstarken und effizienten neuen “Zen” Kern-Architektur, stehen die AMD Ryzen 5 Desktop-Prozessoren für eine unkomplizierte Anpassung an individuelle Nutzerbedürfnisse, gepaart mit sehr schneller Leistung und Reaktionsfähigkeit.

AMD Ryzen 5-Prozessoren wurden für High Application Performance sowie noch flüssigeres Gaming entwickelt. Die 1600X- und 1600-Modelle bieten hier eine Leistungsstärke, die mit der von Workstations vergleichbar und insbesondere für TV-Übertragungen und extrem flüssige Spielerfahrungen konzipiert worden sind. Bei Entwicklung der 1500X- und 1400-Modelle standen vor allen Dingen leistungsstarkes Gaming und eine hochperformante Datenverarbeitung im Vordergrund.

Weitere Informationen zu Ryzen 5 und AMD findet ihr unter folgenden Links:

  • Ryzen 5 Pressemitteilung (Englische Version)
  • Weitere Informationen zu den AMD Ryzen Prozessoren finden Sie unter AMD.com/Ryzen
  • Weitere Informationen zur “Zen” Kern-Architektur finden Sie unter AMD.com/Zen
Die mobile Version verlassen