Kategorien
Aktuelle Tests & Specials auf Hardware-Inside Mainboards

GIGABYTE X399 AORUS XTREME im Test

Nachdem wir schon einige Mainboards für AMDs RYZEN getestet haben, widmen wir uns mit dem Test des GIGABYTE X399 AORUS XTREME den größeren Bruder „RYZEN THREADRIPPER“. Mit dem Erscheinen der zweiten RYZEN THREADRIPPER Prozessoren, wird kein neuer Chipsatz der Öffentlichkeit präsentiert, dennoch setzen einige Hersteller auf neu gestaltete Mainboards. So präsentiert GIGABYTE mit dem X399 AORUS XTREME ein neues Mainboard auf X399 Basis. Neben dem X399 Designare EX und dem X399 AORUS GAMING 7 hat GIGABYTE somit drei X399-Mainboards im Sortiment. Mit einem Preis von 450 € richtet sich das GIGABYTE X399 AORUS XTREME an Enthusiasten. Wir sind sehr gespannt, wie das X399 AORUS XTREME in unserem Test abschneiden wird. Natürlich werfen wir auch wieder einen genauen Blick auf die verbauten Komponenten.

[​IMG]

An dieser Stelle möchten wir uns bei GYGABYTE für die Bereitstellung des Samples sowie für das in uns gesetzte Vertrauen bedanken.​

Verpackung, Inhalt, Daten

Verpackung:

[​IMG]

GIGABYTE verpackt das X399 AORUS XTREME in einer für GIGABYTE typischen gestalteten Verpackung. Allerdings ist die Verpackung größer wie bei manch anderem GIGABYTE-Mainboard. Auf der Verpackung finden wir wichtige Features und die Angabe, dass es sich um ein X399-Mainboard handelt.


Lieferumfang:

[​IMG] [​IMG]

In der Verpackung befindet sich das Mainboard und zahlreicher Lieferumfang.

Im Lieferumfang befindet sich:

  • Handbuch
  • Installationshandbuch in mehreren Sprachen (Englisch, Deutsch usw.)
  • zahlreiche Sticker
  • 2 x Temperatursensoren
  • Treiber-DVD
  • Klett-Kabelbinder
  • G-Connector
  • Torx-Schlüssel für Sockel
  • Innensechskant-Schlüssel für Demontage des untersten M.2-Kühlers
  • 2 x Verlängerungskabel für addressierbare LEDs
  • 2 x Verlängerungskabel für RGBW-LEDs
  • W-LAN-Antenne
  • HB-SLI-Brücke
  • 3 x Schrauben + verschraubare Mutter für M.2-Montage
  • 6 x SATA-Kabel (3 x an einem Ende 90°)


Technische Daten:

Hersteller, Modell GIGABYTE, X399 AORUS XTREME
Formfaktor E-ATX
Sockel TR4
CPU (max.) AMD RYZEN THREADRIPPER 2990WX
Chipsatz AMD X399
Speicher DDR4 3600+*(O.C.) / 3466+(O.C.) / 2933 / 2667 / 2400 / 2133 MHz
Speicher-Kanäle / Steckplätze Quad-Channel / 4
Speicher (max.) 128 GB
M.2-Ports 2 x M.2 PCIe x4/x2 (SATA) 2260/2280/22110
2 x M.2 PCIe x4/x2 (SATA) 2242/2260/2280
PCI-Express Steckplätze 2 x PCIe 3.0 x16
2 x PCIe 3.0 x8
1 x PCIe 2.0 x1
Interne Anschlüsse(normal) 1 x OC PEG power connector
1 x CPU-Lüfter-Anschluss
1 x CPU-Lüfter / Wasserpumpen-Anschluss
3 x Gehäuselüfteranschluss
2 x Gehäuselüfter / Wasserpumpen-Anschluss
2 x RGB-LED-Anschluss (addressierbar)
2 x RGB-LED-Anschluss (RGBW)
6 x SATA 6Gb/s
1 x Front Panel-Audio
1 x S/PDIF Out Header
1 x USB-3.1-Gen2
2 x USB-3.1-Gen1
2 x USB-2.0/1.1
1 x TPM-Header
2 x Temperatursensor-Anschlüsse
Anschlüsse I/O 1 x USB-3.1-Gen2 Type-C
1 x USB-3.1-Gen2 Type-A
8 x USB-3.1-Gen1
1 x RJ-45-Anschlüsse (10 Gbit)
2 x RJ-45-Anschlüsse (1 Gbit)
2 x W-LAN-Antennenanschlüsse (2T2R)
1 x S/PDIF-Out-Anschluss (optisch)
5 x 3,5mm-Klinkenanschlüsse

Im Detail

[​IMG] [​IMG]

Der erste Eindruck vom GIGABYTE X399 AORUS XTREME ist sehr positiv. Durch die zahlreichen verbauten Kühler, den riesigen TR4-Sockel und die Backplate wirkt es sehr stabil. Durch die verbauten Kühler, den riesigen TR4-Sockel und die Backplate ist es auch kein Leichtgewicht und bringt gute 2 Kilogramm (2098 Gramm) auf die Waage. Für CPU/Gehäuse-Lüfter bietet es uns sieben Lüfteranschlüsse, wovon wir drei auch für eine Wasserpumpe nutzen können. Insgesamt befinden sich vier LED-Anschlüsse für adressierbare- und RGBW-LEDs auf dem X399 AORUS XTREME.

[​IMG]

Unter dem PCI-Express-Slots finden wir einige Anschlüsse für das Frontpanel, darunter befinden sich zwei USB-2.0- und zwei USB-3.1-Gen1-Anschlüsse. Links finden wir zwei Anschlüsse für RGB-Streifen oder -Lüfter. Rechts verbaut GIGABYTE zusätzlich eine Diagnose-LED. Daneben können wir den Power/Reset-Schalter und die HDD/Power-LEDs anschließen.

[​IMG] [​IMG]

GIGABYTE verbaut auch einen USB-3.1-Gen2-Anschluss für das Frontpanel, diesen finden wir unter dem 24-Pin-Stromanschluss. Insgesamt können wir auf sechs SATA-Anschlüsse zurückgreifen. Wir würden acht SATA-Anschlüsse bevorzugen, da es sich um ein High-End-Mainboard handelt. Unter den SATA-Anschlüssen können wir einen 6-Pin-PCI-Express-Stromanschluss anschließen. Dieser dient zur Stabilisierung der PCI-Express-Slot Spannung.

[​IMG]

Das I/O-Backpanel, des X399 AORUS XTREME, ist sehr gut ausgestattet. Neben acht USB-3.1-Gen1-Anschlüssen, sind auch zwei USB-3.1-Gen2-Anschlüsse verbaut. Einer der USB-3.1-Gen2-Anschlüsse bietet einen Type-C Anschluss. Für die Netzwerkverbindung werden uns, neben den zwei Anschlüssen für die W-Lan-Antennen, drei RJ45-Anschlüsse angeboten. Zwei davon sind mit 1 Gbit angebunden und der rote RJ45-Anschluss bietet uns sogar sehr schnelle 10 Gbit. Für Overclocker wir des Weiteren auch eine CMOS-Reset- und Power-ON-Taste geboten.

[​IMG] [​IMG]

Für Erweiterungskarten, wie Grafikkarten, verbaut GIGABYTE fünf PCI-Express-Slots. Die zwei oberen Slots sind mit sechszehn PCI-Express-3.0-Lanes angebunden. Die beiden unteren PCI-Express-Slots bieten acht PCI-Express-Lanes. Der mittlere PCI-Express-Slot ist mit einer Lane angebunden. Somit werden uns ausreichend Slots für ein SLI oder Crossfire Setup geboten. Für M.2-SSDs sind drei M.2-Slots, die jeweils mit vier PCI-Express-Lanes angebunden sind, auf dem Mainboard verbaut.

[​IMG] [​IMG]

Jeder M.2-Slot hat einen passiven Kühlkörper. Die Kühler sind allerdings unterschiedlich groß. Der größte Kühler ist mit dem Chipsatzkühler über zwei Schrauben verbunden.

[​IMG] [​IMG]

Unter der Abdeckung, mit der Beschriftung ESS SABRE HIFI, setzt GIGABYTE auf einen ESS ES9118EQ Soundchip, der auch auf einigen Smartphones zum Einsatz kommt.

[​IMG]

Auch in diesem Test, werfen wir wieder einen Blick unter die Haube oder besser gesagt unter die VRM-Kühler. Nur so können wir sehen, was genau für Bauteile für die Spannungsversorgung zum Einsatz kommen und ob diese ausreichend dimensioniert sind.

[​IMG] [​IMG]

Um an die Schrauben der VRM-Kühler zu kommen, müssen wir zuvor die Backplate abschrauben. Dafür müssen wir acht Schrauben lösen. Nachdem wir die Backplate abgeschraubt haben, entdecken wir den verbauten RGB-LED-Streifen auf der Rückseite der Backplate. Damit auch die Bauteile auf der Rückseite, die auch für die CPU-Spannungsversorgung zuständig sind, gekühlt werden, setzt GIGABYTE auf ein Wärmeleitpad zwischen Backplate und Mainboardrückseite.

[​IMG] [​IMG]

Nach der Backplate können wir die Blende über dem I/O-Backpanel entfernen. An der Blende sind zwei 40-mm-Lüfter verschraubt. Beide Lüfter haben jeweils eine maximale Leistungsaufnahme von 3 Watt.

[​IMG]

Der linke VRM-Kühler wird von beiden 40-mm-Lüftern aktiv gekühlt. Dank der zahlreichen Lamellen bietet der VRM-Kühler genügend Fläche zur Kühlung. Unter dem schwarzen passiven Kühlkörper, den wir mittig auf dem Bild erkennen, befindet sich ein Netzwerkcontroller von AQUANTIA, durch den der verbaute 10-Gbit-RJ45-Anschluss erst möglich ist.

[​IMG] [​IMG]

Ohne die VRM-Kühler, die per Heatpipe miteinander verbunden sind, können wir uns die Spannungsversorgung für die CPU-Kerne, die SOC und den Arbeitsspeicher anschauen. Da wir auch den Chipsatzkühler entfernt haben, können wir uns auch den X399-Chipsatz von AMD in voller Pracht ansehen.

[​IMG] [​IMG]

Insgesamt verbaut GIGABYTE sechszehn MOSFETs, wovon drei den Arbeitsspeicher (IR3523) mit Strom versorgen. Sehr beeindruckend ist, das drei PWM-Controller zum Einsatz kommen. Einer der PWM-Controller steuert die MOSFETs für den Arbeitsspeicher. Auch auf der Rückseite erkennen wir, das GIGABYTE sehr viel Wert auf die Spannungsversorgung legt. Hier finden wir auch die Kondensatoren, die als solche kaum zu erkennen sind. Hierbei handelt es sich um POSCAPs, die von PANASONIC hergestellt werden. Der Vorteil dieser Kondensatoren liegt Unteranderem in der geringen Größe, der hohen Zuverlässigkeit und der Hitzebeständigkeit.

[​IMG] [​IMG]

Für die CPU-Spannungsversorgung verbaut GIGABYTE zehn IR3578 MOSFETs, wovon jeder 50 Ampere bereitstellen kann. Zusätzlich sind drei weitere IR3578 MOSFETs verbaut, diese befinden sich unten links neben dem Arbeitsspeicherslot und versorgen die SOC mit Strom. Nicht nur bei den MOSFETs und Kondensatoren wird auf hochwertige Bauteile gesetzt, sondern auch bei den Spulen, die so auch bei Server-Mainboards zum Einsatz kommen.

[​IMG]

Alle zehn MOSFETs für die CPU-Spannungsversorgung werden von einem IR35201-PWM-Controller gesteuert. Dieser kann acht Spannungsphasen steuern, daher greift GIGABYTE zu einem Trick und setzt auf der Rückseite des Mainboards auf fünf Doppler. Somit handelt es sich bei dem GIGABYTE X399 AORUS XTREME um eine fünf-Phasen-CPU-Spannungsversorgung. Allerdings ist diese Leistungsfähiger wie eine richtige fünf Phasen CPU-Spannungsversorgung, da sich pro Phase zwei MOSFETs die Last teilen und daher nicht so warm werden. In der Praxis schauen wir uns an, wie warm diese werden.

BIOS & Software

[​IMG] [​IMG] 

Im UEFI des GIGABYTE X399 AORUS XTREME können wir zahlreiche Einstellungen treffen. Die für Overclocker interessantesten finden wir unter M.I.T.. Dort können wir den Multiplikator des Prozessors erhöhen, den Speichertakt einstellen und unter anderem auch Kerne oder SMT deaktivieren.

[​IMG] [​IMG]

Auch können wir diverse Spannungen verändern und die Loadline anpassen. Es wird alles angeboten, was zum richtigen Übertakten benötigt wird.

[​IMG] [​IMG]

Die Lüftersteuerung im UEFI lässt sich einfach per Mausklick anpassen, so können wir zum Beispiel auch die Lüfterkurve entsprechend unserer Bedürfnisse anpassen. Gut finden wir, das wir alle Lüfter mit einer Einstellung konfigurieren können und nicht für jeden Lüfter einzeln etwas einstellen müssen. Zusätzlich zu den OC-Einstellungen unter M.I.T. können wir auch unter Periphals weitere OC-Einstellungen treffen und das Ganze noch mal etwas verfeinern.

GIGABYTE Easy Tune & RGB Fusion

[​IMG]

Für das Übertakten unter Windows, können wir zu dem Programm Easy Tune greifen. Dieses bietet nahezu alle OC-Einstellungsmöglichkeiten, die uns auch im UEFI geboten werden. Für die Steuerung der verbauten RGB-LEDs, müssen wir uns das Tool RGB Fusion installieren. Ist das Tool installiert, können wir diverse Profile laden oder die RGB-LEDs auf eine statische Farbe einstellen.

Praxistest 

Testsystem
Mainboard GIGABYTE X399 AORUS XTREME
Prozessor AMD RYZEN THREADRIPPER 1920X
Arbeitsspeicher 2x GEIL Superluce RGB – DDR4 – 3000 MHz – 8 GB
Prozessorkühler ENERMAX LIQTECH TR4 240
Grafikkarte ASUS STRIX Strix GeForce GTX 960 4 GB
M.2-SSD / SSD / Externe SSD SAMSUNG 960 EVO / CRUCIAL MX500 / SAMSUNG Portable SSD T5
USB-Stick SanDisk Ultra USB 3.0
Netzteil be quiet! Straight Power 11
Betriebssystem Windows 10 Education – Version 1803
Infrarot-Temperaturmessgerät ETEKCITY Lasergrip 774
Strommessgerät brennenstuhl pm231e

Da uns kein AMD RYZEN THREADRIPPER 2990WX zur Verfügung steht, testen wir das Mainboard mit einem THREADRIPPER 1920X. Gekühlt wird dieser von einer All in One Wasserkühlung von Enermax. Damit wir die zahlreichen Anschlüsse ausreichend testen können, setzen wir auf eine Samsung 960 EVO, eine Crucial MX500 und eine Samsung Portable SSD T5. Die Temperaturen der VRM-Kühler messen wir mit einem ETEKCITY Lasergrip 774 und den Stromverbrauch mit einem brennenstuhl pm231e.

RGB-Effekte

Erster M.2-Slot

[​IMG]

Die höchste Bandbreite, der verbauten Samsung 960 EVO, messen wir im obersten M.2-Slot. Auch messen wir hier die niedrigste Temperatur und das, obwohl es nur der zweit größte Kühler ist.

Zweiter M.2-Slot

[​IMG]

Der mittlere M.2-Slot bietet auch ausreichend Leistung, bietet allerdings mit gemessenen 76 °Celsius am wenigsten Kühlleistung.

Dritter M.2-Slot

[​IMG]

Der dritte M.2-Slot ist genau so schnell wie der zweite Slot. Die Temperatur ist mit gemessenen 64 °Celsius minimal Wärmer wie der oberste M.2-Slot.

SATA-Geschwindigkeit

[​IMG]

Das Messergebnis der SATA-Anschlüsse liegt im Normalbereich.

USB-3.1-Gen2-Geschwindigkeit

[​IMG]

Beim Messen der Geschwindigkeit der USB-3.1-Gen2-Anschlüsse ist die verwendete Samsung Portable SSD T5 der Flaschenhals. Der Anschluss könnte theoretisch sogar 1250 MB/s Daten übertragen.

USB-3.1-Gen1-Geschwindigkeit

[​IMG]

Die Geschwindigkeit des USB-3.1-Gen1 messen wir mithilfe einer CRUCIAL BX100, die an einem SATA zu USB-3.0-Controller angeschlossen ist . Wir erreichen eine maximale Bandbreite von 250 MB/s. Trotz der hohen Bandbreite, limitiert der verwendete SATA zu USB-3.0-Controller die maximale Bandbreite des USB-3.1-Gen1-Anschlusses. Theoretisch sind hier bis zu 600 MB/s möglich, in der Praxis sind es meistens aber nur 450 MB/s.

Overclocking

[​IMG]

Obwohl die ZEN-Kerne nicht so viel OC-Potenzial, wie INTELS CPUs, bieten, schauen wir dennoch das Übertaktungspotenzial des AMD RYZEN THREADRIPPER 1920X in Kombination mit dem GIGABYTE X399 AORUS XTREME an. Mit einer CPU-Spannung von 1,287 Volt erreichen wir gute 4 GHz. Ein CPU-Takt von 4,1 GHz war auch möglich, benötigt aber unverhältnismäßig mehr CPU-Spannung.

Temperaturen

[​IMG]

Die Temperaturen der MOSFETs messen wir mit Standardtaktraten und mit einem CPU-Takt von 4 GHz auf allen zwölf CPU-Kernen. Mit den Standardtaktraten, die auf allen Kernen bei Volllast bei 3,7 GHz liegt, erreichen wir 47 °Celsius am MOSFET-Temperatursensor. Nur die Backplate wird, mit gemessenen 53,7 °Celsius, etwas wärmer. Mit OC steigen die Temperaturen, am MOSFET-Temperatursensor, um 10 °Celsius an. Die Temperatur der Backplate ist mit 69,1 °Celsius ganze 15,4 °Celsius wärmer wie mit Standardtakt, dennoch liegen alle Temperaturen in einem grünen Bereich und bieten genügend Spielraum für einen größeren Prozessor wie zum Beispiel dem AMD RYZEN THREADRIPPER 2990WX.
In unserem Test konnten wir die zwei verbauten 40-mm-Lüfter nicht aus dem Testsystem heraushören.

Stromverbrauch
[​IMG]

Dass der Stromverbrauch von High-End-Plattformen etwas höher ist, wie bei Gaming-Plattformen, ist kein Geheimnis. Dennoch messen wir den Stromverbrauch. Dieser liegt im Idle bei 96,5 Watt. Unter Volllast steigt dieser auf 260,4 Watt an und ist in Anbetracht das es sich um einen zwölf Kerner handelt, gut. Mit einem CPU-Takt von 4 GHz und einer Spannung von 1,287 Volt steigt nicht nur die Leistung, sondern auch der Stromverbrauch um circa 90 Watt an.

Fazit

GIGABYTE bietet, mit dem X399 AORUS XTREME, ein sehr gut ausgestattetes Mainboard für AMDs RYZEN THREADRIPPER an. Aber nicht nur die Optik hat GIGABYTE perfektioniert, sondern auch die Wahl der Bauteile für die Spannungsversorgung ist sehr gut gewählt und so liefert die Spannungsversorgung ausreichend Reserven für das Übertakten, da die MOSFETs in unserem Test sehr kühl bleiben Dank der guten VRM-Kühler. Auch bei größeren CPUs, wie dem THREADRIPPER 2990WX, dürften die Spannungswandler einen sehr stabilen Betrieb gewährleisten. Aber nicht nur die Spannungsversorgung und die Optik können glänzen, sondern auch die zahlreichen PCI-Express-Slots, M.2-Slots und die Anschlüsse für Peripherie können uns überzeugen. Allerdings hätten es zwei SATA-Anschlüsse mehr sein können, da wir sechs SATA-Anschlüsse als etwas wenig empfinden für ein High End Mainboard. Sehr gut finden wir, dass drei RJ45-Anschlüsse verbaut sind, wovon einer sogar 10 Gbit Daten übertragen kann. Alle Messergebnisse liegen in einem guten Bereich und sind den Erwartungen entsprechend gut.

Wir vergeben dem GIGABYTE X399 AORUS XTREME 9.9 von 10 Punkten. Mit dieser Punktzahl erhält es den Empfehlung Spitzenklasse Award.

[​IMG]

PRO
+ Spannungsversorgung
+ VRM-Kühlung
+ Optik
+ Backplate
+ Adressierbare RGB-Beleuchtung
+ Vier PCI-Express-x16-Slots (2x x16/2x x8)
+ Drei M.2-Slots (x4)
+ Drei RJ45-Anschlüsse
+ Ein 10 Gbit RJ45-ANSCHLUSS
+ Zahlreiche USB-Anschlüsse
+ integriertes W-Lan-Modul

KONTRA
– Nur sechs SATA-Anschlüsse

[​IMG]

Wertung: 9.9/10

Produktlink
Preisvergleich

Kategorien
Aktuelle Tests & Specials auf Hardware-Inside Mainboards

GIGABYTE X299 AORUS Gaming 7 im Test

Das X299 AORUS Gaming 7 gehört bei GIGABYTE zu Mainboards der Oberklasse und bringt jede Menge Features mit sich. So verfügt es zum Beispiel über fünf PCIe-3.0-x16-Steckplätze und auch drei M.2-Schnittstellen sowie acht SATA 6GBit/s Anschlüsse. Dazu gesellen sich fünf USB-3.1-Gen2- und jeweils sechs USB-3.1-Gen1- und USB-2.0-Schnittstellen. Für den Netzwerkbereich hat das X299 Gaming 7 zweimal Gigabit-LAN und auch ein WLAN- und Bluetooth-Modul zu bieten. Was das Mainboard darüber hinaus zu bieten hat werden wir euch auf den folgenden Seiten zeigen.

[​IMG]

Bevor wir nun mit unserem Test beginnen, möchten wir uns bei unserem Partner GIGABYTE für die freundliche Bereitstellung des Testmusters, sowie für das in uns gesetzte Vertrauen bedanken.

Verpackung, Inhalt, Daten

Verpackung

[​IMG] [​IMG]

Das X299 AORUS Gaming 7 kommt in einem opulenten und hochwertig verarbeiteten Karton. Auf der Vorderseite finden sich das Hersteller- sowie das Modelllogo, die Modellbezeichnung und eine Abbildung des für diese Serie typischen, stilisierten Falkenkopf. Im Unteren Bereich werden einige Features in Form von Icon dargestellt. Die Rückseite ist prall gefüllt mit Abbildungen diverser Mainboard Regionen und den dazu passenden Beschreibungen. In der Unteren, linken Ecke ist die Tabelle mit den technischen Daten untergebracht. Viele Aufdrucke auf der Verpackung wirken metallisch und wechseln teilweise je nach Lichteinfall ihre Farbe.

Die Verpackung lässt sich einfach aufklappen und gibt dann den Blick auf das Mainboard frei. Zum Schutz befindet es sich in einer antistatischen Folie und ist rundum von schwarzem Schaumstoff umgeben. Die Oberseite wird von einem durchsichtigen Deckel aus Kunststoff bedeckt. Unterhalb des Mainboards befindet sich ein weiterer Karton. Auf diesem Karton liegt ein Bogen mit einigen AORUS-Aufklebern, die der Nutzer nach Lust und Laune platzieren kann. Auf Aufkleber zum Markieren von Kabeln sind dabei. Im Karton unter diesem Aufkleber-Bogen ist der restliche Lieferumfang enthalten.

Inhalt

[​IMG] [​IMG]

[​IMG] [​IMG]

Neben dem Mainboard befindet sich noch folgendes Zubehör im Lieferumfang:

  • I/O Shield
  • WLAN Antenne
  • 2x Klett-Kabelbinder
  • 3x Kabel für diverse RGB Geräte
  • 2x Temperatursensoren
  • SLI HB Brigde
  • G-Connector
  • Klemme für Antenne
  • 2x SATA Kabel mit graden Steckern, Gewebeummantelt
  • 2x SATA Kabel mit abgewinkelten Steckern, Gewebeummantelt
  • Schraube für M.2 SSD
  • Bedienungsanleitung (englisch)
  • Installation Guide (Multilingual)
  • DVD mit Treibern und Software

Daten

Technische Daten – GIGABYTE X299 AORUS Gaming 7
CPU Sockel LGA2066 (für Kaby-Lake-X und Skylake-X)
Stromanschlüsse 1x 24-Pin ATX
2x 8-Pin EPS12V
CPU-Spannungsphasen/SOC 8/1 Stück
Chipsatz Intel X299 Chipsatz
Speicherbänke und Typ max. 128 GB UDIMM (mit 16-GB-UDIMMs)
max. 512 GB RDIMM mit ECC (nur mit LGA2066-Xeon-CPU)
PCI-Express 5x PCIe 3.0 x16 (elektrisch mit x16/x4/x16/x4/x8)
SLI (3-Way), CrossFireX (3-Way)
SATA(e)-, SAS- und
M.2/U.2-Schnittstellen
8x SATA 6 GBit/s über Intel X299
3x M.2 mit PCIe 3.0 x4 über CPU (M-Key, 32 GBit/s, 2x shared)
USB 6x USB 3.1 Gen2 (5x extern, 1x intern) über Realtek RTS5423/2x ASMedia ASM3142
8x USB 3.1 Gen1 (4x extern, 4x intern) über Realtek RTS5411/Intel X299
4x USB 2.0 (4x intern) über Intel X299
WLAN/Bluetooth Rivet Networks Killer Wireless-AC 1535 Dual-Band (max. 867 MBit/s)
Bluetooth 4.1
LAN 1x Intel I219-V Gigabit-LAN
1x Rivet Networks Killer E2500 Gigabit-LAN
Audio-Codec
und Anschlüsse
8-Channel Realtek ALC1220 Audio Codec, ESS ES9018Q2C DAC
5x 3,5 mm Audio-Jacks
1x TOSLink
Lüfter Anschlüsse 1x 4-Pin CPU-FAN-Header
1x 4-Pin CPU-OPT-FAN-Header
1x 4-Pin Chassis-FAN-Header
3x 3-Amp-WaKü-FAN-Header
Features RGB Beleuchtung
RGB Header

Chipsatz

[​IMG]

Mit der Einführung des X299 Chipsatzes im zweiten Quartal 2017, läutet Intel eine neue Chipsatz-Ära ein. Zum ersten Mal verfügen die Mainboards über PCIe 3.0 Lanes. Das Herstellungsverfahren, mit einer Lithographie von 22 nm, ermöglicht hier neue Dimensionen zur Gestaltung der Leistung. So verfügt der X299 Chipsatz über eine Bustaktfrequenz von 8 GT/s DMI3 mit einer Verlustleistung von 6 Watt. Der Chipsatz besitzt keine Steuerung einer integrierten Grafikeinheit der CPU. Somit werden verbaute CPUs immer eine dedizierte Grafiklösung brauchen. Der Chipsatz erlaubt ein Übertakten von jeglichen installierten Bauteilen und setzt damit keine Grenzen.

[​IMG]

Der X299 Chipsatz bietet uns bis zu 24 PCIe 3.0 Lanes, welche mit vier CPU-Lanes verbunden sind. Neben diesen werden bis zu acht SATA 3.0 und zehn USB 3.0 Anschlüsse für eine breite Interface Versorgung geboten. Insgesamt können es bis maximal vierzehn USB-Anschlüsse sein. Wenn keine SATA SSDs gewünscht werden, können auch bis zu drei M.2 x4 Anschlüsse angebunden werden. Die X299 Plattform bietet eine Arbeitsspeicheranbindung mit Dual- und Quad-Channel Support für bis zu acht DDR4 DIMMs. Neu hinzugekommen ist auch die native Unterstützung von Optane Speicher zur Beschleunigung der Systemreaktionszeit, wenn eine Magnetfestplatte verbaut wird.

Details

[​IMG] [​IMG]

Typisch für Mainboards mit X299 Chipsatz befinden sich links und rechts vom CPU Sockel jeweils vier DDR-4-DIMM-Speicherbänke. In diese können insgesamt 64 GB bei Kaby-Lake-X oder 128 GB bei Skylake-X Prozessoren verbaut werden. Die Speicherbänke verfügen über Verstärkungen aus Metall, wodurch die Steckplätze an Stabilität gewinnen. Oberhalb des Sockels ist ein Kühlkörper angebracht, der die darunter befindlichen Spannungswandler kühlt. Für eine bessere Wärmeabgabe ist der Kühler über eine Heatpipe mit einem weiteren Kühlkörper verbunden, der sich unter der Blende der hinteren Anschlüsse befindet. Unter dem Kühlkörper sehen wir insgesamt neun Spannungswandler, von denen acht für die CPU-VRIN-Spannung zuständig sind. Der zusätzliche (neunte) Spannungswandler ist für die CPU-System-Agent-Spannung gedacht. Verbaut sind somit acht hochwertige PowIRstage-MOSFETs des Typs IR3556M (50 Ampere), für die CPU-Spannung. sowie einmal den IR3553M (40 Ampere), für die SOC. Oberhalb des Kühlkörpers sind zwei 8-Pin EPS-12V Anschlüsse untergebracht. Die beiden Anschlüsse sind für ein stabiles Übertakten notwendig, wenn nicht übertaktet wird, dann reicht auch ein einziger 8-Pin EPS-12V Anschluss.

[​IMG]

Über den DIMM-Speicherbänken auf der linken Seite sehen wir einen IR35201-PWM-Controller von International Rectifier, der sich für die acht CPU-Spannungswandler verantwortlich zeichnet. An diesen sind die verbauten CPU-Spannungswandler ohne Doppler angebunden und uns wird eine richtige 8+1 Spannungsversorgung präsentiert. Damit ist auch klar, dass der danebenliegende IR35204 alleine für den Spannungswandler der System-Agent-Spannung zuständig ist. Was sogar etwas an Verschwendung grenzt, da er 3+1 Spannungsphasen ansprechen kann.

[​IMG]

Das x299 AORUS Gaming 7 verfügt über insgesamt fünf PCIe 3.0 x16 Steckplätze für Erweiterungskarten. Vier der Steckplätze sind über die CPU angebunden, währen der Fünfte über den Chipsatz angebunden ist. Oberhalb sowie unterhalb des ersten PCIe Steckplatzes befinden sich jeweils ein M.2 Steckplatz für entsprechende SSDs. Ein Dritter M.2 Steckplatz befindet sich unterhalb des Southbridge-Kühlers. Für einen kühleren Betrieb ist dieser Steckplatz mit einem Kühler für die M.2 SSD ausgestattet. Um herkömmliche Laufwerke oder SSDs anzuschließen, stehen insgesamt acht SATA3 Anschlüsse zur Verfügung, wobei die Anschlüsse 4 bis 7 wegfallen, wenn unten rechts eine M.2 SSD eingesetzt ist.

Im Folgenden zeigen wir die Aufteilung der PCIe Steckplätze. Diese hängt von den jeweils eingesetzten Prozessoren ab. Die Einstiegs-Varianten der Skylake-X Prozessoren – der i5-7640X sowie der i7-7740X, müssen mit 16 PCIe Lanes auskommen, während die Mittelklasse bereits 28 PCIe Lanes bedienen kann. Mit der Oberklasse – ab dem i9-7900X aufwärts stehen 44 PCIe Lanes zu Verfügung – mit dieser beginnen wir.

Slot Anbindung Single GPU 2-Wege-SLI/CrossFireX 3-Wege-SLI/CrossFireX
1. Slot – PCIe 3.0 x16 x16 über CPU x16 x16 x16
2. Slot – PCIe 3.0 x16 x4 über X299 Chipsatz
3. Slot – PCIe 3.0 x16 x16 über CPU x16 x16
4. Slot – PCIe 3.0 x16 x4 über CPU
5. Slot – PCIe 3.0 x16 x8 über CPU x8

Als nächstes folgt die Aufteilung der PCIe Lanes von Core i7-7800X und Core i7-7820X – mit28 PCIe Lanes.

Slot Anbindung Single GPU 2-Wege-SLI/CrossFireX 3-Wege-SLI/CrossFireX
1. Slot – PCIe 3.0 x16 x16/x8 über CPU x16 x16 x8
2. Slot – PCIe 3.0 x16 x4 über X299 Chipsatz
3. Slot – PCIe 3.0 x16 x16 über CPU x8 x8
4. Slot – PCIe 3.0 x16 x4 über CPU
5. Slot – PCIe 3.0 x16 x8 über CPU x8

Und abschließend noch die Aufteilung für den i5-7640X und den i7-7740X – mit 16 PCIe Lanes.

Slot Anbindung Single GPU 2-Wege-SLI/CrossFireX
1. Slot – PCIe 3.0 x16 x8 über CPU x8 x8
2. Slot – PCIe 3.0 x16 x4 über X299 Chipsatz
3. Slot – PCIe 3.0 x16 x4 über CPU x4
4. Slot – PCIe 3.0 x16
5. Slot – PCIe 3.0 x16 x4 über CPU

[​IMG] [​IMG]

Unten links befinden sich die für den Ton verantwortlichen Bauteile. Beim X299 AORUS Gaming 7 kommt der Realtek-ALC1220 Codec zum Einsatz, der von ESS Sabre 9018 DAC ( digital to analog converter – Digital-Analog-Umsetzer) und vier WIMA- sowie fünf Audiokondensatoren unterstützt wird. Zusammen mit einem Kopfhörerverstärker bis 600 Ohm soll der Klang noch ein besser sein. Unterhalb der Kondensatoren befindet sich der Anschluss für die Audioanschlüsse des Gehäuses. Rechts daneben sind Anschlüsse für LED Geräte sowie vier Taster untergebracht. Jeweils ein Power- und Reset-Button sowie ein OC- und ECO-Button. Der OC-Button verhilft dem System automatisch zu etwas mehr Leistung, der ECO-Button sorgt dagegen dafür, dass das System möglichst effizient arbeitet. Weiter rechts folgen zwei USB 2.0 Header und zwei 4-Pin Lüfter-Anschlüsse, wobei einer davon auch zum Anschluss einer Pumpe dienen kann. Außerdem findet sich daneben eine zweitstellige LED Anzeige, welche über diverse Zustände informiert, sowie ein USB 3.0 Header und der Anschluss für das Front Panel.

[​IMG] [​IMG]

An Anschlüssen stehen auf der Rückseite insgesamt acht USB Typ-A Anschlüsse und einen USB Typ-C Anschluss bereit. Alle unterstützen den aktuellen USB 3.1 Standard wobei der weiße Anschluss speziell für die „Q-Flash-Plus“ Funktion dient. Damit lässt sich das BIOS ohne eingelegte CPU und ohne Arbeitsspeicher aktualisieren. Ein PS/2 Anschluss für Eingabegeräte ist auch vorhanden. Für die Verbindung zum Netzwerk stehen zwei Gigabit-LAN-Buchsen und WLAN bereit. Einer der beiden LAN-Anschlüsse wird über einen Rivet Networks Killer-E2500-Controller und der andere über einen Intels I219-V-PHY gesteuert. Beim WLAN ist ein Killer-Wireless-AC-1535-Modul von Rivet zuständig. Die Abdeckung der Anschlüsse verfügt über eine Besonderheit und zwar ist auch sie mittels RGB LEDs beleuchtet. Dafür muss das Kabel von der Blende zwischen die Anschlüsse geführt und dann in den entsprechenden Anschluss auf dem Mainboard eingesteckt werden.

UEFI & Software

UEFI

[​IMG] [​IMG]

Das Mainboard liefert GIGABYTE, in unserem Fall, mit der aktuellen BIOS Version F9g, vom 25. Juni 2018. Damit sind alle beworbenen Funktionen auf dem Mainboard verfügbar. Zum Start begrüßt uns das UEFI in einem einfach gestalteten Modus, der auch passenderweise als „Easy Mode“ benannt ist. In der linken oberen Ecke erhalten wir die Basisinformationen zu unserem System. Daneben finden sich Informationen zur aktuellen Temperatur des Prozessors, zur CPU VCORE sowie zur Systemtemperatur. In der rechten oberen Ecke kann zwischen verschiedenen Profilen gewechselt werden. Je nach Bedarf kann der Nutzer auswählen ob mehr Performance oder ob ein Energiesparender Betrieb gewünscht ist. In der Mitte werden Informationen zum Arbeitsspeicher sowie zu den verbauten SATA Laufwerken angezeigt. Im unteren Bereich dreht sich alles um die auf dem Board angeschlossenen Lüfter bzw. Pumpen und der „Smart-Fan“ Funktion.

Klicken wir im „Easy-Mode“ auf den „Smart-Fan“ Bereich, so gelangen wir zu den entsprechenden Einstellungen der Funktion. Hier können für jeden Lüfter eigene Kurven oder feste Drehzahlen festgelegt werden. Zudem kann hier eingestellt werden, dass das Mainboard eine Warnung herausgibt, wenn Lüfter oder Pumpen ausfallen oder eine bestimmte Temperatur überschritten wird. Zusätzlich erhalten wir Informationen zu diversen Temperaturen in unserem System und zu den Drehzahlen.

[​IMG] [​IMG]

Wir schalten um in den erweiterten Modus und erlangen nun Zugriff auf alle Einstellungsmöglichkeiten des Mainboards. Dabei ist der Modus in insgesamt sieben Registerkarten unterteilt. In einigen dieser Registerkarten befinden sich noch Untermenüs. Die Bedienung ist sowohl mit Tastatur als auch mit der Maus komfortabel möglich. Im ersten Registerreiter namens „M.I.T.“ erhalten wir Zugriff auf die Einstellungen zur Frequenz, zum Speicher, zur Spannung sowie zum PC Health Status und weiteren Einstellungen. Durch die Funktionen in diesen Untermenüs ist es möglich den Prozessor sowie den Speicher zu übertakten. Schlussendlich gelangen wir über den untersten Punkt in die Einstellungen zur „Smart-Fan“ Funktion. Unter dem Reiter „System“ werden Informationen wie das Mainboard-Modell, die aktuell installierte BIOS-Version, die Uhrzeit und das Datum angezeigt. Hier lässt sich auch die Sprache des UEFI/BIOS einstellen.

[​IMG] [​IMG]

[​IMG] [​IMG]

Unter dem Reiter „BIOS“ geht es um das Startverhalten und Sicherheitsfunktionen. Zudem ist eine Einstellung der Mausgeschwindigkeit möglich. Beim nächsten Reicher „Peripherie“ können alle auf dem Mainboard vorhandenen Onboard-Komponenten individuell eingestellt werden. Unter dem Reiter „BIOS“ geht es um das Startverhalten und Sicherheitsfunktionen. Zudem ist eine Einstellung der Mausgeschwindigkeit möglich. Beim nächsten Reicher „Peripherie“ können alle auf dem Mainboard vorhandenen Onboard-Komponenten individuell eingestellt werden. Alle Einstellungen rund um den X299 Chipsatz lassen sich unter dem Reiter „Chipsatz“ konfigurieren. Optionen bezüglich Stromsparmaßnahmen sind im Reiter „Power“ zu finden.

[​IMG]

Im letzten Reiter namens „Speichern & Beenden“ finden wir, wie der Name es schon vermuten lässt, alle Optionen, die wir wählen können bevor wir das BIOS/UEFI verlassen. Zudem lassen sich hier auch Profile speichern, beziehungsweise vorhandene Profile können geladen werden.

Software

[​IMG]

Mit dem X299 AORUS Gaming 7 Mainboard kommt auch eine DVD, die neben Treibern auch Software enthält. Wahlweise kann die Software natürlich auch auf der Internetseite von GIGABYTE heruntergeladen werden. Die vermutlich wichtigste Software ist das APP Center, denn hier können alle Mainboard-spezifischen Programme ausgeführt werden. Was die in der Software enthaltenen Programme genau machen listen wir euch hier kurz auf.

  • 3D OSD – Zeigt Systeminformationen an einer beliebigen Position auf dem Bildschirm an.
  • @BIOS – Von hier aus kann das BIOS auf Aktualisierungen geprüft und aktualisiert werden.
  • AutoGreen – Steuern von Energiesparplänen und Bluetoothgeräten.
  • BIOS Setup – Zum Einstellen diverser BIOS Funktion, beispielsweise die Sprache.
  • Color Temperature – Schaltet einen Blaufilter ein um die Augen zu schonen.
  • USB Blocker – Blockt USB Geräte.
  • Cloud Station & Cloud Server – Stellt Clouddienste bzw. den Zugang zu Clouddiensten bereit.
  • Easy Tune – Einfache Möglichkeit des automatischen Übertakten von Prozessor und Speicher. Auch ein erweiterter Modus für erfahrene Anwender ist vorhanden.
  • EZ Raid – Zum Erstellen eines RAID Verbunds.
  • Fast Boot – Einstellungen für einen schnellen Systemstart.
  • Game Boost – Schaltet Hintergrundprogramme aus um Spiele zu beschleunigen.
  • GIGABYTE HW OC App – Übertakten über ein mobiles Gerät.
  • PlatformPowerManagement – Zum Strom sparen.
  • RGB Fusion – Einstellen der auf dem Mainboard verbauten RGB LEDs sowie an den entsprechenden Headern angeschlossenen RGB Geräten.
  • SIV – System Information Viewer, zeigt Informationen über das System an. Hierüber sind auch die Lüfter-Drehzahlen einstellbar.
  • Smart Backup – Erstellt eine Sicherungskopie und stellt von einem System via Backup wieder her.
  • Smart TimeLock – Einstellungen zum Sperren des Systems für bestimmte Zeiten.
  • Smart HUD – Stellt Headup-Display Funktionen wie eine Bild in Bild Funktion zur Verfügung.
  • Smart Keyboard – Kann beispielsweise Tasten mit Makros belegen.
  • USB DAC-UP 2 – Einstellung um mehr Spannung auf USB Ports bereitzustellen.
  • VTuner – Übertaktungsmöglichkeit für Grafikkarten

Beleuchtung und Effekte

[​IMG]

Ein Highlight des X299 AORUS Gaming 7 Mainboards ist die Möglichkeit, es mittels der verbauten RGB LEDs zum Strahlen zu bringen (in sechs Zonen). Außerdem wird auch das I/O Shield der rückwärtigen Anschlüsse beleuchtet und eben über diese App gesteuert. Die RGB Fusion App gibt uns dazu vielfältige Möglichkeiten. Zur besseren Übersicht ist die App in drei Reitern unterteilt. Im Reiter „Basic“ geht es um die einfachen Einstellungen, hierbei werden dann sämtliche RGB LEDs auf dem Mainboard beeinflusst. In der linken Seite des Fensters können die folgenden Effekte eingestellt werden:

  • Impuls: Komplett einfarbige Beleuchtung, Beleuchtung dimmt und blendet wieder auf.
  • Musik: Komplett einfarbige Beleuchtung, Beleuchtung leuchtet im Takt der Musik.
  • Farbzyklus: Komplette Beleuchtung wechselt die Farben, Geschwindigkeit einstellbar.
  • Statisch: Komplette Beleuchtung leuchtet in der eingestellten Farbe.
  • Blinken: Komplette Beleuchtung blinkt in der eingestellten Farbe.
  • Zufällig: Beleuchtete Elemente leuchten zufällig auf.
  • Welle: Farbwelle auf der Abdeckung der hinteren Anschlüsse.
  • Double Flash: Komplette Beleuchtung blitzt in der eingestellten Farbe doppelt auf.
  • Demo: Die Beleuchtung wechselt die Farben und die Effekte wechseln sich ab.

[​IMG] [​IMG]

Im Reiter „Advanced“ können alle sechs Zonen sowie die RGB Header manuell eingestellt werden. So kann jede einzelne Zone in einer eigens gewählten Farbe mit einem jeweils anderen Effekt eingestellt werden. Dasselbe gilt für die an den RGB Headern angeschlossenen Geräte. Im letzten Reiter „Intelligent“ leuchtet die Beleuchtung je nach Systemzustand in einer anderen Farbe.

In unserem Video geben wir euch einen kurzen Überblick über die Beleuchtung des GIGABYTE X299 AORUS Gaming 7 Mainboards.

Praxistests

Testsystem

Testsystem
Mainboard GIGABYTE X299 AORUS GAMING 7
Prozessor Intel Core i9-7900X (es)
Arbeitsspeicher 4x G.Skill Ripjaws V – DDR4 – 3200 MHz – 4 GB
Prozessorkühler Thermaltake Floe Riing RGB 360 TT Premium Edition
Grafikkarte KFA2 GeForce GTX 1070 Ti EX
SSD/Optane Plextor M9Pe(Y) 512 GB NVME M.2 SSD (Nur M.2)
Intel Optane Memory – 32 GB – M.2
HDD Toshiba P300 – 2 TB – 7.200 U/Min. – 3,5″
Seagate BarraCuda Compute – 1 TB – 7.200 U/Min. – 3,5″
Netzteil Antec Edge 650W
Betriebssystem Windows 10 Pro – Version 1803

Das GIGABYTE X299 AORUS Gaming 7 statten wir mit einem Intel Core i9-7900X (Engineering Sample) und vier Riegeln Ripjaws V DDR4 @3.200 MHz Arbeitsspeicher aus. Den Speicher betreiben wir somit im Quadchannel Betrieb. Zur Kühlung des Prozessors kommt eine Thermaltake Floe Riing RGB 360 TT Premium Edition mit einem 360 mm Radiator zum Einsatz. Zum Testen der M.2 Steckplätze nutzen wir eine Plextor M9Pe(Y) mit 512 GB Kapazität als Systemlaufwerk. Die SSD haben wir dafür aus dem PCIe Adapter entnommen und mit einem Aquacomputer kryoM.2 micro Kühler ausgestattet. Als Betriebssystem kommt Windows 10 Pro mit allen Updates und aktuellen Treibern zum Einsatz.

M.2 Schnittstelle

[​IMG]

Wir testen den ersten M.2-Slot, der mit vier PCI-Express-3.0-Lanes angebunden ist, mit einer Plextor M9Pe(Y) 512 GB NVME M.2 SSD. Mit den von uns gemessenen Werten können wir keine Limitierung des M.2-Slots feststellen. Die Ergebnisse der anderen M.2 Anschlüsse sind mit leichten Toleranzen nahezu gleich.

SATA-Anschluss

[​IMG]

Um die Geschwindigkeit der SATA Anschlüsse zu ermitteln kommt eine Samsung 860 EVO zum Einsatz. An diesem Anschluss erreichen wir nahezu die Geschwindigkeit, die uns Samsung für diese SSD verspricht.

USB-3.1-Gen1 und USB-3.1-Gen2 Anschluss

[​IMG]

Nun testen wir die USB-3.1-Gen1 und USB-3.1-Gen2 Anschlüsse anhand einer externen SSD, der EX1 von Plextor. Den USB-3.1-Gen2 können wir mit diesem Datenträger nicht ausreizen, da die maximale Lesegeschwindigkeit bei 550 MB/s und die maximale Schreibgeschwindigkeit bei 500 MB/s liegen. So kommen wir bei beiden Anschlüssen (bis auf geringe Toleranzen) auf dieselben Werte.

Leistung und OC

[​IMG]

Das X299 AORUS Gaming 7 bietet zahlreiche Optionen an um Arbeitsspeicher und Prozessor zu übertakten. Darum haben wir uns für einen i9-7900X als auch für einen mit 3.200 MHz, recht schnellen Speicher entschieden. Allerdings handelt es sich beim Prozessor um ein sogenanntes Engineering Sample von Intel. Bei unseren Übertaktungsversuchen enden wir bei 4,70 GHz – da bringt es auch nichts die Spannung über 1,300 Volt zu schrauben. Für den Arbeitsspeicher aktivieren wir das XMP 2.0 Profil.

[​IMG]

In Cinebench (aktuelle Version) erreichen wir mit diesen Einstellungen einen geringen Abstand zwischen den Standard- und den OC-Einstellungen. So erreichen wir im Multi-Core-Bench eine Punktzahl von 2382 Punkten in den Standard-Einstellungen. Hier taktet die CPU mit bis zu 4,5 GHz. Mit Übertaktung kommen wir auf 2463 Punkte.

[​IMG]

In den Benchmarks von AIDA64, in der Engineer Version 5.97.4600, erscheinen die Unterschiede zu den Standardeinstellungen etwas ausgeprägter. Insbesondere in den CPU Queen und CPU AES Benchmarks. Während unserer Benchmarks in Cinebench und AIDA64 erreichen wir an der CPU eine Temperatur von maximal 84 Grad Celsius.

[​IMG]

Unter Prime95 (Vers. 26.6) messen wir die Temperaturen der Spannungswandler. Hierfür nutzen wir nicht nur die Sensoren auf dem Mainboard, sondern nehmen die Temperatur auf der Backplate des Kühlers ab, dafür nutzen wir ein Infrarot Thermometer. Außerdem messen wir die Temperatur über einen Sensor, den wir zwischen Spannungswandler und Kühler befestigen. Die Temperaturen nehmen wir nach einem 10-Minütigen Lauf ab.

[​IMG]

Den Energieverbrauch messen wir mit einem brennenstuhl pm231e. Der Verbrauch im Idle liegt trotz recht moderater Übertaktung etwas höher, was an der höheren Spannung liegt. Im Gaming Betrieb bleibt der Verbrauch mit maximal 405 Watt im Rahmen, wobei der Prozessor hier nicht annährend voll ausgelastet ist. Der größte Verbraucher dürfte da eher die Grafikkarte sein. In Prime95 (Version 26.6) wird der Prozessor dann komplett ausgelastet.

Fazit

Das GIGABYTE X299 AORUS Gaming 7 ist derzeit ab 431,33 Euro im Handel erhältlich. Das ist natürlich ein stolzer Preis für ein Mainboard, jedoch in Anbetracht der Ausstattung gerechtfertigt. Zumal andere Mainboards in ähnlicher Ausstattung sich in einer ähnlichen Preislage befinden. Besonders Freunde gepflegter RGB Beleuchtung werden sich mit diesem Mainboard wohlfühlen, denn nahezu jedes Bauteil kann nach eigenen Wünschen an- und ausgeleuchtet werden. Das Mainboard ist direkt mit zwei 8 PIN Steckern für die Stromversorgung der CPU sowie einem großzügigen Kühler der Spannungswandler ausgestattet, was auch die Overclocking Fraktion freuen wird. Wir vergeben 9,7 von 10 Punkten und unsere Empfehlung für ein Mainboard der Spitzenklasse.

[​IMG]

Pro:
+ Verarbeitung
+ Design
+ Gut dimensionierte Kühlkörper
+ 2x 8-Pin CPU Stromversorgung
+ Ausstattung an Anschlüssen
+ drei M.2-Schnittstellen
+ Buttons und Fehleranzeige auf dem Mainboard

Kontra:
– Preis

[​IMG]

Wertung: 9,7/10
Produktseite
Preisvergleich

Kategorien
Der Tag im Überblick: Alle Meldungen

GIGABYTE enthüllt die neuen Grafikkarten der GeForce RTX 20 Serie

Taipeh, Taiwan, 20. August 2018 – GIGABYTE, einer der weltweit führende Hersteller von GPUs, hat die neue GeForce® RTX 20 Grafikkarten-Serie auf Basis von NVIDIA TuringTM Architektur angekündigt. Zunächst werden fünf Modelle der neuen Serie erhältlich sein, die Geforce® RTX 2080 Ti GAMING OC 11G, die Geforce® RTX 2080 Ti WINDFORCE OC 11G, die Geforce® RTX 2080 GAMING OC 8G, die Geforce® RTX 2080 WINDFORCE OC 8G und die Geforce® RTX 2070 GAMING OC 8G. Diese fünf Grafikkarten verfügen über GIGABYTE WINDFORCE 3X Kühlung mit gegenläufigen Lüftern, RGB Fusion, schützender Metall-Backplate, GIGABYTE ultra-durable-zertifizierte Materialien und One-Klick Overclocking, sodass alle Spieler ultimatives Gaming mit extremer Leistung genießen können.

Das GIGABYTE WINDFORCE 3x Kühlsystem versorgt alle Komponenten der Grafikkarte und ist mit drei einzigartigen Lüftern, semi-passivem Lüfter-Modus und hocheffizienten Komposit-Heatpipes aus Kupfer ausgestattet. Durch den direkten Kontakt zwischen Heatpipes und der GPU wird die Temperatur der Grafikkarte jederzeit auf einem niedrigen Niveau gehalten, was zu höherer und stabilerer Leistung führt. Der mittlere Lüfter rotiert entgegengesetzt zu den äußeren Lüftern und optimiert so den Airflow und die Hitzeableitung für einen effizienteren Betrieb bei geringen Temperaturen.

Die neuen Grafikkarten setzen auf ein Multi-Phasen Power Design, wodurch es dem MOSFET möglich wird, bei geringeren Temperaturen zu arbeiten. Hinzu kommen Überhitzungsschutz und Auslastungs-Balancing bei jedem MOSFET, sowie ultra-durable Drosselspulen und Kondensatoren für eine herausragende Leistung und längere Lebensdauer. Die One-Klick Overclocking Funktion bietet drei voreingestellte Modi, durch die der Nutzer die Einstellungen schnell und einfach an die aktuellen Leistungsanforderungen anpassen kann. Die Rückseite der Grafikkarte ist mit einer Metall-Backplate ausgerüstet, die nicht nur die gesamte Stabilität erhöht, sondern auch die Leiterplatte vor Schäden, wie etwa Verbiegen, bewahrt. Um den Ansprüchen von Spielern vollauf gerecht zu werden, erlaubt es RGB Fusion die Farbe und Effekte der Beleuchtung in der AORUS Engine frei an die individuellen Vorlieben anzupassen.

Neben diesen fünf Grafikkarten mit TuringTM wird GIGABYTE in naher Zukunft neue Enthusiast-Modelle von AORUS auf den Markt bringen, darunter neue luft- und wassergekühlten Designs mit modernster RGB-Beleuchtung, sodass Spieler noch mehr Auswahl bei der Zusammenstellung ihrer ultimativen Gaming-Maschine haben.

Kategorien
Aktuelle Tests & Specials auf Hardware-Inside Mainboards

GIGABYTE B450 AORUS PRO im Test

Der neue B450 Chipsatz von AMD ist da! Und direkt zum Start bietet GIGABYTE mit der AORUS-Serie, Mainboards an, welche Gamer ansprechen sollen. Wir haben hier das B450 AORUS PRO, wie gut sich das Mainboard im Alltag schlägt, erfahrt ihr in unserem Test.

[​IMG]

An dieser Stelle möchten wir uns bei GYGABYTE für die Bereitstellung des Samples sowie für das in uns gesetzte Vertrauen bedanken.​

Verpackung, Inhalt, Daten

Verpackung:

[​IMG] [​IMG]

Wie üblich bei AORUS Serie von GIGABYTE, ist die Verpackung in schwarz und orange gehalten. Ein Großteil der Vorderseite macht die Abbildung eines Greifvogelkopfes, im unteren Bereich sind Produktbezeichnung so wie einige Features zu sehen. Auf der Rückseite werden weitere Features beworben, in der unteren linken Ecke sind die technischen Daten zu finden. Darüber hinaus ist auch das Mainboard abgebildet.

[​IMG] [​IMG]

Öffnen wir die Packung, sehen wir direkt das Mainboard, welches in einer antistatischen Folie eingepackt ist. Darunter befindet sich das Zubehör.

Lieferumfang:

[​IMG]

Im Lieferumfang befinden sich:

  • 2x SATA-Kabel
  • 1x Treiber-CD
  • 1x Anleitung
  • 2x M.2 Schrauben
  • 1x One G Konnektor

Technische Daten:

[​IMG]

Im Detail

[​IMG] [​IMG]

Das Design des B450 AORUS PRO ist GIGABYTE, wie auch bei den anderen Mainboards der Serie, sehr gut gelungen. Uns gefallen vor allem die Kühlelemente. So bietet das Mainboard nicht wie üblich nur einen M.2-Kühler, sondern zwei. Auffallend ist auch die massiv wirkende Kühlung der MOSFETs.

[​IMG] [​IMG]

Kommen wir zu den internen Anschlüssen. Hier finden wir drei USB-Anschlüsse für das Frontpanel auf. Mit zwei USB-2.0 und einen USB-3.1-Gen1. Ebenso steht uns auch ein Audio Anschluss für das Frontpanel zur Verfügung. Des Weiteren können wir auf sechs SATA-Anschlüsse zurückgreifen. Darüber hinaus bietet uns das B450 AORUS PRO die Möglichkeit fünf Lüfter-Anschlüsse, inklusive der Wasserpumpen-Anschlüsse.

[​IMG]

Das I/O-Backpanel verfügt über sechs USB-Anschlüsse, davon sind vier USB 3.1 Gen 1, ein USB 3.1 Gen 2 Type-A und der Letzte ist ein USB 3.1 Gen 2 Type-C. Für Audio-Eingabe und -Ausgabegeräte finden wir fünf 3,5-mm-Klinkenanschlüsse und einen digitalen SPIDF-Out. Ebenso stehen uns ein HDMI-Anschluss, so wie ein DVI-D-Anschluss für APUs zur Verfügung.

[​IMG]

Das B450 AORUS Pro verfügt über vier PCIe-Anschlüsse, drei PCI-Express-x16-Slost und ein x1-Slot. Der erste PCI-Express-x16-Slot ist mit sechszehn PCI-Express-Lanes angebunden und ist als einziger Slot verstärkt. Der Zweite ist mit vier Lanes angebunden, jedoch teilt er sich zwei Lanes mit dem dritten PCI-Express-x16-Slot und dem PCI-Express-x1-Slot, die jeweils mit einer Lane angebunden sind, sind diese nicht in Benutzung nutzt der zweite PCI-Express-x16-Slot die vier Lanes. Links unten bei den sieben goldenen Nichicon Kondensatoren, befindet sich der ALC1220 Audioprozessor. Der Audioprozessor kann bis zu acht Kanäle ansteuern.

[​IMG] [​IMG]

Als Nächstes schauen wir uns die Spannungsversorgung im Detail an. Dazu müssen wir allerdings die Blenden und die VRM-Kühler entfernen. Als Erstes schauen wir uns den PWM-Controller an, welcher für die Spannungsversorgung zuständig ist. Geworben wird mit einem 8+3 Phasen Design, dies ist jedoch nicht ganz richtig, denn der PWM-Controller ISL 95712 von Intersil unterstützt nur 4+3 Phasen. Das heißt, hier wird mit vier Dopplern gearbeitet, um diese Anzahl an Phasen für die CPU zu nutzen.

[​IMG] [​IMG]

Sehen wir uns die Phasen und die MOSFETs etwas genauer an. Hier fällt uns auf, dass wir bei den drei SOC-Phasen jeweils zwei MOSFETs haben, hierbei handelt es sich um ein High-MOSFET 4C10N und einem Low-MOSFET 4C06N von OnSemiconductor. Die MOSFETs mit der Bezeichnung 4C06N können uns 69 Ampere und die 4C10N können 46 Ampere bereitstellen. Gehen wir weiter zu den CPU-Phasen. Hier kommen, anders wie beworben, vier Phasen zum Einsatz, die von jeweils einem 4C10N und zwei 4C06N gebildet werden. Durch das Verwenden mehrerer MOSFETS pro Phase, steigt die Fläche, welche Wärme abgeben kann, was positiv ist, denn dadurch sinken die Temperaturen beider.

Chipsatz/UEFI/Software

Der Unterschied zwischen AMDs B350- und B450-Chipsatz ist nicht so groß, wie der Name glauben lässt. Weder bei der Anbindung der PCI-Express-Slots oder der USB-Ports hat sich etwas geändert. Die Unterschiede liegen hier eher im Detail. So verfügt der B450 über den XFR2-Enhanced- und den Precision-Boost-Overdrive-Modus. Diese sollen den Ryzen-Prozessoren der zweiten Generation dazu verhelfen, im Idealfall etwas höher als mit dem B350 zu takten. Des Weiteren bietet der B450-Chipsatz die Möglichkeit die AMD STOREMI Technologie kostenlos zu nutzen. Mithilfe dieser Software können wir die Vorteile einer SSD und einer großen Magnetfestplatte kombinieren und somit unsere eigene Hybridfestplatte erstellen.

[​IMG]

Das UEFI finden wir im üblichen GIGABYTE-Design auf. Der erste Reiter M.I.T. dürfte für die meisten Nutzer am interessantesten sein, denn dort befinden sich alle wichtigen Einstellungen zur CPU, zum Arbeitsspeicher und zu den Spannungen. Darüber hinaus kommen wir über das Untermenü Smart Fan 5 Settings zur Lüftersteuerung.

[​IMG] [​IMG]

In den Advanced Frequency Settings können die Geschwindigkeit von CPU und Arbeitsspeicher verändert werden, falls dies gewünscht ist. Ebenso ist es auch möglich das XMP-Profil zu laden. Kommen wir zum Untermenü Advanced Voltage, hier dürfte es den größten Unterschied zum X470 Chipsatz geben, denn die Einstellungsmöglichkeiten wurden auf das Minimum reduziert. Wir haben nur noch die Einstellungen VCORE, VCORE SOC und DRAM zur Auswahl. Dennoch kann hier übertaktet werden.

[​IMG]

Bei Smart Fan5 Settings können wir die Drehzahl der Lüfter, so wie die Lüfterkurve nach Belieben anpassen. Ebenso ist es möglich, das sich die Lüfter bei einer gewissen Temperatur abschalten. Natürlich stehen uns auch vordefinierte Profile zur Verfügung.

[​IMG]

Wie der Name des Reiters schon sagt, können wir hier unsere getätigten Einstellungen speichern und das UEFI verlassen. Ebenfalls können wir hier unsere Einstellungen in einem Profil speichern und weitere Profile anlegen sowie nach Bedarf laden.

[​IMG]

GIGABYTE bietet mit dem Tool „RGB-Fusion“ die Möglichkeit, die verbauten RGB-LEDs zu steuern. Wenn weitere Komponenten mit RGB-LEDs verbaut sind, können diese ebenfalls über die Software gesteuert werden.

[​IMG] [​IMG]

Im zweiten Reiter Advanced können wir auf die einzelnen LED-Bereiche zugreifen und diese steuern, darüber hinaus können die Einstellungen in drei Profilen gespeichert werden. Unter dem letzten Reiter „Intelligent“ können wir die Beleuchtung an die Auslastung oder der Temperatur der CPU anpassen. Somit erkennen wir mit einem Blick in das Gehäuse, wie es unserer CPU im Moment ergeht.

Praxistest 

In unserem Test verbauen wir einen AMD Ryzen 5 2600. Beim Arbeitsspeicher setzen wir auf insgesamt 16 GB, welche sich auf zwei Module mit einem Takt von jeweils 3000 MHz verteilen. Der Prozessor wird von einem Scythe Fuma gekühlt und das Ganze wird in einem be quiet! Dark Base 700 Gehäuse untergebracht.

M.2-Schnittstelle

[​IMG]

Wir testen den ersten M.2-Slot, der mit vier PCI-Express-3.0-Lanes angebunden ist, mit einer Samsung 960 Evo. Mit den von uns gemessenen Werten können wir keine Limitierung des M.2-Slots feststellen und sind zufrieden mit den Ergebnissen.

[​IMG]

Ebenso haben wir den zweiten M2.-Slot getestet, dieser ist mit zwei PCI-Express-3.0-Lanes angebunden. Theoretisch bietet dieser Slot eine maximale Bandbreite von 2000 MB/s. Wir erreichen 1780MB/s und sind damit 220MB/s vom theoretischen Wert entfernt, was wahrscheinlich an der Kommunikation zwischen M.2-SSD und Chipsatz liegen wird. Im Vergleich mit einigen von uns zuvor getesteten X470-Mainboards, die hier etwas schlechter abgeschnitten haben, ist das ein sehr gutes Ergebnis.

SATA-Anschluss

[​IMG]

Kommen wir zur SATA-Schnittstelle, hier liegen die gemessenen Werte im üblichen Bereich unserer verbauten SSD.

USB-3.1-Gen2 Anschluss

[​IMG]

Nun testen wir den USB-3.1-Gen2 Anschluss, dieser hat eine maximale Brandbreite von 1200 MB/s. Dadurch ist klar, dass die von uns verwendete SSD hier der Flaschenhals ist und der USB-3.1-Gen2 Anschluss hier nicht der limitierende Faktor ist.

USB-3.1-Gen1 Anschluss

[​IMG]

Zum Schluss testen wir auch den USB-3.1-Gen1 Anschluss, bei diesem beträgt die maximale Transferrate 500MB/s. Hier erreichen wir mit dem GIGABYTE B450 AUROS PRO einen Wert von 411MB/s, dies entspricht dem Maximalwert, der in der Praxis möglich ist.

OC

[​IMG] [​IMG]

Da auch der B450 Chipsatz ein Übertakten ermöglicht, haben wir getestet, wie gut wir unsere CPU übertakten können. Mehr als 4 Ghz waren leider nicht möglich, die maximale Übertaktung ist allerdings auch von der CPU abhängig. Bei dem Arbeitsspeicher war bei 2667 MHz Schluss, was aber an der Inkompatibilität unserer verwendeten Arbeitsspeicher liegt. Mit diesen Werten erreichen wir im Cinebench maximal 1370 Punkt beim Multithreading und im Singlethreading maximal 167 Punkte.

Durch das Messen der Temperatur der MOSFETs, überprüfen wir, ob diese beim Übertakten limitieren. Mithilfe einer CPU-Spannung von 1,296 Volt und dem Tool Prime95, messen wir maximal 47 °Celsius auf dem VRM-Kühler. Der Sensor des Mainboards zeigt uns eine Temperatur von 61 °Celsius an. Dem entsprechend dürfte klar sein, dass die VRM-Kühlung gute Arbeit leistet und noch genügend Spielraum nach oben ist.

[​IMG]

Der Stromverbrauch im Idle liegt bei nur 48 Watt, heben wir den Takt auf 4,0 GHz sind es gerade mal 2 Watt mehr im Idle. Doch unter Volllast erreicht der Verbrauch schließlich doch hohe Werte. Hier liegen die beiden Werte nicht mehr so nah aneinander, ohne OC sind wir bei 136 Watt und mit OC kommen wir auf 168 Watt, was immer noch ein akzeptabler Wert ist.

Fazit

GIGABYTE ist mit dem B450 AORUS Pro wieder ein sehr gutes Mainboard gelungen. Das Mainboard ist derzeit ab 119,99 Euro im Handel erhältlich. Wie wir es von der AORUS-Serie gewohnt sind, weiß das Design und die Ausstattung zu überzeugen. Auch die VRM-Kühlung überzeugt und die Temperaturen der MOSFETs bleiben im grünen Bereich, selbst bei Erhöhung der Spannung. Vor allem das zwei M.2-Slot-Kühler dabei sind, hat uns sehr gefallen. Der Preis lag uns zum Zeitpunkt des Tests nicht vor, es ist jedoch davon auszugehen, dass er deutlich unterhalb der X470-Modelle liegen dürfte. Wir vergeben dem GIGABYTE B450 AORUS Pro 9,3 von 10 Punkten und verleihen den „Empfehlung“ Award.

[​IMG]

PRO
+ Design
+ Zwei M.2-Kühler
+ VRM-Kühlung
+ Spannungsversorgung
+ Dual-BIOS
+ Stromverbrauch

NEUTRAL:
– Für M.2 Wechsel muss Grafikkarte ausgebaut werden

KONTRA
– nichts gefunden

[​IMG]

Wertung: 9.3/10
Produktseite
Preisvergleich

Kategorien
Der Tag im Überblick: Alle Meldungen

GIGABYTE erhellt den DRAM-Markt mit den AORUS RGB Speichern

Taipeh, Taiwan, 09. Juli 2018 – GIGABYTE TECHNOLOGY Co. Ltd, einer der führenden Hersteller von Motherboards und Grafikkarten, kündigt mit den AORUS RGB Speichern die erste DRAM mit XMP-Unterstützung an. Die DDR4 XMP 3200 16GB(2x8GB) Speichermodule und die beiden RGB-beleuchteten Demo Module der AORUS RGB Speicherkits liefern eine herausragende Kombination aus high-end Performance und ästhetischer Beleuchtung. Über die GIGABYTE RGB FUSION oder RGB FUSION Link Software können Nutzer unkompliziert die 5 brandneuen, DDR-exklusiven Lichteffekte anpassen und so in den Genuss der beeindruckendsten RGB-Beleuchtung kommen, die Speichermodule zu bieten haben.

GIGABYTE hat die neuen AORUS RGB Speicher erstmals auf der Computex 2018 vorgestellt und erhielt dafür von der Presse viel Lob, sowie die begehrten Best Product Awards von Tom`s Hardware aus den USA und TechRadar aus dem UK. Die AORUS RGB Speichermodule verfügen über Kühlkörper aus Aluminium mit anodisierter, strichgeschliffener Oberfläche für eine elegante, metallische Optik. Eine einzigartige Besonderheit der AORUS RGB Speicher sind zudem die beiden Demo Module für eine gleichmäßige Beleuchtung und brillante Effekte. Diese machen die Anschaffung zusätzlicher RGB Demo Module für die nicht genutzten DIMM Slots unnötig und schonen so das Budget der Nutzer. Nun können Nutzer auf ihrem Board Speicher-Kits mit integrierten RGB Demo Modulen verbauen und alle Vorzüge einer brillanten RGB-Beleuchtung genießen.

GIGABYTE AORUS RGB Speicher-Kits unterstützen eine Vielzahl exklusiver AORUS Beleuchtungseffekte und verfügen über einen Licht-Diffusor am Kühlkörper für die perfekte Balance aus stylischer Optik und Beleuchtung. Die völlig neuen Lichteffekte und -modelle geben dem Nutzer unzählige Möglichkeiten zur individuellen Anpassung. Die Beleuchtung kann dabei über die RGB Fusion Software eingestellt und synchronisiert werden, während Besitzern von Third-Party-Boards durch RGB Fusion Link die gleichen Optionen zur Verfügung stehen.

Die AORUS RGB Speicher werden als 16GB (2x8GB) Kits mit DDR4 3200MHz erhältlich sein. Diese Spezifikationen sind für aktuelle high-end Systeme optimal, da Speichersetups mit niedrigerer Frequenz häufig nicht die ganze Leistung des Systems nutzen können, während Setups mit höherer Frequenz oft ein unnötig hoher Kostenfaktor sind. Die GIGABYTE AORUS RGB Speicher bieten ein optimales Verhältnis von Preis zu Leistung und ermöglichen es, das ganze Potential eines high-end PCs voll auszuschöpfen.

Um die bestmögliche Nutzererfahrung gewährleisten zu können, werden die Kühlkörper der AORUS RGB Speicher-Kits durch Aluminium-Extrusion ohne Schrauben verbunden und bieten eine makellose, strukturelle Verarbeitung. Für eine noch sicherere Installation sind die Kanten und die Basis der Kühlkörper mit einer kratzfesten Beschichtung versehen. Das lasergravierte AORUS Adler-Logo auf der Seite ist insbesondere für AORUS-Fans nicht nur ikonisch, sondern erleichtert auch die korrekte Positionierung des Speichers. Nutzer können die Module einfach installieren, indem sie das Logo so positionieren, dass der Adler voranfliegt. Die Kühlkörper der AORUS RGB Speicher sind dreimal dichter als jene herkömmlicher Speichermodule und erlauben eine signifikant bessere Wärmeabgabe. Die größere Kühloberfläche und die daraus gesteigerte Wärmeabgabe reduziert hitzebedingte Abfälle der Speicherleistung.

In einem aufwendigen Testverfahren wurden alle AORUS RGB Speichermodule von GIGABYTE auf ihre Haltbarkeit geprüft, um sicherzustellen, dass sie den strengen GIGABYTE Ultra-Durable Standards entsprechen.

Die GIGABYTE AORUS RGB Speicher werden in Kürze erhältlich sein. Weitere Informationen findest du auf der offiziellen AORUS Webseite.

Kategorien
Aktuelle Tests & Specials auf Hardware-Inside Mainboards

GIGABYTE X470 AORUS GAMING 7 WIFI

Nachdem wir mit dem ASUS ROG STRIX X470-I Gaming schon ein Mainboard mit X470-Chipsatz getestet haben, schauen wir uns in diesem Test ein weiteres Mainboard mit AMDs neustem Chipsatz an. Diesmal hat GIGABYTE uns das X470 AORUS GAMING 7 WIFI zur Verfügung gestellt. Dabei handelt es sich um das aktuell größte und teuerste Mainboard von GIGABYTE mit dem X470-Chipsatz. Mit einem Preis von über 230 € richtet sich dieses vor allem an Enthusiasten, die nicht an Features und Qualität sparen wollen. In unserem Test nehmen wir das GIGABYTE X470 AORUS GAMING 7 WIFI genauer unter die Lupe und schauen, ob die gebotene Leistung und die Features dem Kaufpreis gerecht werden.

[​IMG]

Bevor wir nun mit dem Test beginnen, danken wir GIGABYTE für die freundliche Bereitstellung des Testsamples und die gute Zusammenarbeit.​

Verpackung, Inhalt, Daten

Verpackung:

[​IMG] [​IMG]

Das Design der Verpackung des X470 AORUS GAMING 7 WIFI entspricht dem aktuellen Verpackungsdesign von GIGABYTE. Sie ist in schwarzorangenen Farben gehalten und ein großer Kopf eines Falken ist abgebildet. Im unteren Bereich finden wir die Produktbezeichnung und einige aufgelistete Features. Auf der Rückseite werden weitere Features beworben, wie beispielsweise das 10+2 Phasen-Design, das wir uns später noch anschauen werden. Darüber hinaus ist auch das Mainboard abgebildet.


Lieferumfang:

[​IMG] [​IMG]

Beim Öffnen der Verpackung springt uns das Mainboard sofort ins Auge. Direkt darunter liegt das gesamte Zubehör.

[​IMG]

Der Lieferumfang des GIGABYTE X470 AORUS GAMING 7 WIFI entspricht den Erwartungen, die wir bei einem Mainboard für Enthusiasten haben. Für Fans, der Marke AORUS, liegen zahlreiche Sticker bei.


Technische Daten:

[​IMG]

Im Detail

[​IMG] [​IMG]

Das Design des X470 AORUS GAMING 7 WIFI ist GIGABYTE sehr gut gelungen. Uns gefallen vor allem die Kühlelemente. So bietet das Mainboard nicht wie üblich nur einen M.2-Kühler, sondern zwei. Auffallend ist auch die Kühlung der MOSFETs, die wir uns noch im Detail anschauen werden. Für genügend Lüfteranschlüsse ist auch gesorgt, GIGABYTE verbaut insgesamt acht Stück, was mehr als ausreichend ist. Auf der Rückseite befindet sich sogar eine Backplate, die wir in diesem Preissegment bisher noch bei keinem anderen Hersteller gesehen haben.

[​IMG] [​IMG]

Schauen wir uns die internen Anschlüsse etwas genauer an. Hier fallen uns die vielen USB-Anschlüsse für das Frontpanel auf. Mit zwei USB-2.0, zwei USB-3.1-Gen1 und einem USB-3.1-Gen2 bietet GIGABYTE uns alles, was wir benötigen. Natürlich ist auch ein Audio Anschluss für das Frontpanel vorhanden. Des Weiteren können wir auf sechs SATA-Anschlüsse zurückgreifen. Links unter der Plastikabdeckung, neben fünf goldenen Nichicon Kondensatoren, befindet sich der ALC1220 Audioprozessor. Der Audioprozessor kann maximal acht Kanäle ansteuern.

[​IMG]

Am I/O-Backpanel stehen uns insgesamt zehn USB-Anschlüsse zur Verfügung. Neben den USB-2.0-Anschlüssen, sind sechs USB-3.1-Gen1-Anschlüsse und zwei USB-3.1-Gen2 in Type-A und Type-C vorhanden. Bei den zwei gelben USB-3.1-Gen1-Anschlüssen handelt es sich um USB-DAC-UP-2-Anschlüsse. Diese sollen vor allem eine stabilere Spannung bieten und damit einen stabileren Betrieb mit VR-Headsets und weiteren Eingabegeräten gewährleisten. Da das X470 AORUS GAMING 7 WIFI über ein integriertes W-LAN-Modul verfügt, befinden sich am I/O-Backpanel zwei MMCX-Antennen-Anschlüsse. Für Audio-Eingabe und -Ausgabegeräte finden wir fünf 3,5-mm-Klinkenanschlüsse und einen digitalen SPIDF-Out. Da sich das Mainboard auch an Übertakter richtet, darf natürlich auch ein Clear-CMOS Schalter nicht fehlen, mit dem wir das UEFI bei Bedarf wieder auf die Werkseinstellungen zurücksetzen können. Weiterhin gibt es auch einen Power-Schalter, der vor allem beim Einsatz auf einem Benchtable sehr praktisch sein kann. Im UEFI können wir diesen auch Konfigurieren und zum Reset-Schalter umfunktionieren.

[​IMG]

Für Grafikkarten und weitere Komponenten mit PCI-Express-Anschluss, finden wir insgesamt drei PCI-Express-x16-Slots und zwei x1-Slots. Der erste PCI-Express-x16-Slot ist mit sechszehn PCI-Express-Lanes angebunden. Der Zweite mit acht PCI-Express-Lanes und der Dritte mit vier. Sobald wir im ersten und zweiten PCI-Express-Slot eine Grafikkarte verbaut haben, reduziert sich die Anbindung beim ersten PCI-Express-Slot von sechszehn auf acht PCI-Express-Lanes. Für M.2-SSDs befinden sich zwei M.2-Slots auf dem X470 AORUS GAMING 7 WIFI. Der erste M.2-Slot ist mit vier PCI-Express-3.0-Lanes angebunden und wir können eine M.2-SSD mit einer Länge von 110 mm verbauen. Beim zweiten M.2-Slot beträgt die Anbindung nur noch vier PCI-Express-2.0-Lanes, da er über den X470-Chipsatz angebunden ist. Damit ist die Anbindung des ersten M.2-Slot doppelt so schnell. Wir würden uns wünschen, dass der zweite M.2-Slot auch mit vier PCI-Express-3.0-Lanes angebunden ist. Allerdings setzen auch andere Hersteller beim zweiten M.2-Slot auf vier PCI-Express-2.0-Lanes.

[​IMG]

Über dem ersten PCI-Express-x16-Slot befindet sich der BIOS-Chip. Diesen können wir entfernen und durch einen neuen ersetzen, falls beschädigt.

[​IMG] [​IMG]

Links dem 24-Pin-Stromanschluss, befindet sich die Diagnose-LED, mit deren Hilfe wir Fehler auslesen können. Da das X470 AORUS GAMING 7 WIFI über ein Dual-BIOS verfügt, werden auch zwei Schalter verbaut. Mit dem BIOS-Switch können wir wählen, welches BIOS geladen werden soll. Mithilfe des SB-Switch‘ können wir das zweite BIOS deaktivieren. Zusätzlich zu dem standardmäßigen 8-PIN-EPS-Stromanschluss, bietet GIGABYTE auch einen 4-PIN-EPS-Stromanschluss. Somit stellen beide EPS-Stromanschlüsse gemeinsam 528 Watt für die CPU-Stromversorgung bereit.

[​IMG]

Als Nächstes schauen wir uns die Spannungsversorgung im Detail an. Dazu müssen wir allerdings die Blenden und den VRM-Kühler entfernen.

[​IMG] [​IMG]

Damit wir die obere Blende entfernen können, müssen wir die Schrauben auf der Mainboardrückseite lösen und dementsprechend auch die Backplate abschrauben. Beim Entfernen der oberen Blende müssen wir auch das dreipolige Kabel abklemmen. Dieses verbindet das Mainboard und die RGB-LEDs, die in der oberen Blende verbaut sind führt,

[​IMG]

Nachdem wir die Blende entfern haben, schauen wir uns den VRM-Kühler an. Dieser bietet durch die vielen ALU-Finnen genügend Angriffsfläche zum Kühlen. Des Weiteren sind beide Kühlelemente mit einer Heatpipe verbunden.

[​IMG] [​IMG]

GIGABYTE bewirbt das X470 AORUS GAMING 7 WIFI mit 10+2 Phasen Spannungsversorgung, diese kommt auf den ersten Blick auch zum Einsatz. Ob es sich dabei wirklich um eine 10+2 Phasen Spannungsversorgung handelt, schauen wir uns jetzt an. Zwischen dem I/O-Backpanel und den MOSFETs befindet sich unter anderem der ASMEDIA USB-3.1-Gen2-Controller.

[​IMG] [​IMG]

Bevor wir uns die MOSFETs anschauen, betrachten wir den PWM-Controller, der für die Spannungsversorgung zuständig ist. GIGABYTE setzt auf einen IR 35201 PWM-Controller. Dieser kann maximal nur acht Phasen steuern, somit ist uns klar, dass auf dem X470 AORUS GAMING 7 WIFI keine echte zwölf Phasen-Spannungsversorgung zum Einsatz kommt. GIGABYTE setzt hier auf eine 5+2 Konfiguration des PWM-Controllers. Pro CPU-Phase kommt somit ein Doppler zum Einsatz, wodurch die Spannungsversorgung nah an eine echte 10+2 Phasen Spannungsversorgung heranreicht. Die für die CPU zuständigen MOSFETs von IR mit der Bezeichnung 3553M, liefern pro MOSFET 40 Ampere. Da insgesamt zehn MOSFETs für die CPU zuständig sind, stehen uns 400 Ampere für die CPU bereit. Die restlichen zwei MOSFETs mit der Bezeichnung 3556M, die auch von IR stammen, stellen jeweils 50 Ampere Stromstärke zur Verfügung. Das Ganze wird von zwölf Spulen und acht Kondensatoren unterstützt.

UEFI und Software:

[​IMG]

Das UEFI ist im typischen GIGABYTE-Design gestaltet. Unter M.I.T. finden wir alle wichtigen CPU- , Arbeitsspeicher- und Spannungseinstellungen in Untermenüs. Weiter unten im Menü befindet sich die integrierte Lüftersteuerung.

[​IMG] [​IMG]

In den Advanced Frequency Settings können wir den Multiplikator des Prozessors oder die Geschwindigkeit des Arbeitsspeichers einstellen, falls wir übertakten möchten. Des Weiteren können wir auch das XMP-Profil laden. Im Unterordner Advanced Voltage Settings ist es möglich die Spannungen von CPU, Arbeitsspeicher oder auch des Chipsatzes zu verändern. Das ist vor allem dann wichtig, wenn wir Übertakten wollen.

[​IMG]

Im Smart Fan 5 Setting können wir individuell die Lüfterdrehzahlen regeln. Wir können ein vorhandenes Profil laden oder eine eigene Lüfterkurve erstellen. Es ist auch möglich, das die Lüfter sich ab einer vordefinierten Temperatur ausschalten.

[​IMG]

Unter Save & Exit können wir unsere gewählten Einstellungen abschließen und das UEFI verlassen. Davor können wir unter Save Profiles die getroffenen Einstellungen in einem Profil abspeichern. Es ist möglich mehrere Profile zu erstellen und auf Wunsch zu laden.

RGB FUSION

[​IMG]

Mit dem Tool RGB-FUSION können wir die auf dem Mainboard verbauten RGB-LEDs steuern. Falls weitere Komponenten, wie Arbeitsspeicher mit RGB-LEDs verbaut sind, können wir diese auch über das Tool steuern.

[​IMG] [​IMG]

Unter Advanced können wir sogar die einzelnen LED-Bereiche auf dem Mainboard steuern. Zusätzlich können wir auch drei Profile speichern und bei Bedarf laden. Im Menü Intelligent besteht die Möglichkeit, dass sich die Farben der LEDs an die Auslastung oder Temperatur der CPU anpassen. Damit reicht ein Blick in das Gehäuse aus, um zu erkennen, ob die CPU noch genügend Reserven für die Temperatur hat oder diese in einem kritischen Bereich liegt.

Praxistest

[​IMG]

Auf dem GIGABYTE X470 AORUS GAMING 7 WIFI verbauen wir einen AMD RYZEN 5 2600 und ein 16-GB-Arbeitsspeicher-Kit. Der Prozessor wird von einem Cooler Master MA410P gekühlt. Die Grafikkarte wird mit Wasser gekühlt. Die Stromversorgung übernimmt ein be quiet! Straight Power 11 mit 850 Watt Gesamtleistung. Bei unserem Test werden beide EPS-CPU-Stromanschlüsse mit dem Netzteil verbunden.

[​IMG]

Bei der Montage des CPU-Kühlers kann es je nach Montageart zu Problemen kommen, da die Backplate des Mainboards im Weg sein kann. In unserem Fall hat die Montage des Kühlers funktioniert. Falls die Backplate stört, kann diese auch demontiert werden.

M.2-Schnittstelle

[​IMG]

Mit der verbauten Samsung 960 Evo testen wir die Geschwindigkeit des M.2-Slots. Anhand der Messergebnisse des ersten M.2-Slots, die von Durchlauf zu Durchlauf unterschiedlich sein können, erkennen wir keine Limitierung der Bandbreite. In diesem Fall limitiert die verbaute M.2-SSD, da der erste M.2-Slot mit vier PCI-Express-3.0-Lanes angebunden ist und dieser eine maximale Bandbreite von 3938 MB/s zur Verfügung stellt.

[​IMG]

Das Ergebnis des Geschwindigkeitstests am zweiten M.2-Slot sieht allerdings ganz anders aus, da der unterste M.2-Slot nur mit vier PCI-Express-2.0-Lanes angebunden ist und dementsprechend nur eine theoretische Bandbreite von 2000 MB/s bietet. Dass wir in unserem Test nur 1622 MB/s erreichen, liegt unter anderem an der Kommunikation zwischen M.2-SSD und Chipsatz, da diese eine gewisse Bandbreite benötigt. Allerdings erreichen wir mit einem anderen Mainboard, wo der zweite M.2-Slot auch nur über vier PCI-Express-2.0-Lanes angebunden ist, eine Bandbreite von 1832 MB/s und somit 200 MB/s mehr. Hier scheinen die Mainboard-Hersteller trotz gleichem Chipsatz, einen anderen Weg zu gehen.

SATA-Schnittstelle

[​IMG]

Wir messen auch die Geschwindigkeit der SATA-Schnittstelle. Die Ergebnisse liegen für die von uns verbaute SSD in einem normalen Bereich.

USB 3.1 Gen1 Schnittstelle

[​IMG]

Für externe SSDs die über den USB-Anschluss angeschlossen werden, ist die Geschwindigkeit des USB-3.1-Anschlusses wichtig. In diesem Test prüfen wir die USB-3.1-Gen1 Geschwindigkeit. Die theoretisch maximale Geschwindigkeit dieses Anschlusses beträgt 500 MB/s. Beim GIGABYTE X470 AORUS GAMING 7 WIFI erreichen wir maximal 411.9 MB/s. Dieses Ergebnis liegt circa 90 MB/s unter dem theoretisch möglichen. In der Praxis liegt der Maximalwert allerdings so hoch wie von uns gemessen und das Ergebnis ist damit im grünen Bereich.

USB 3.1 Gen2 Schnittstelle

[​IMG]

Anders als der USB-3.1-Gen1 bietet der USB-3.1-Gen2 anstatt der 5 GBit/s ganze 10 GBit/s Datendruchsatz und damit die doppelte Bandbreite. Daher ist es nicht verwunderlich das die Messergebnisse besser ausfallen und der USB-3.1-Gen2-Anschluss nicht der limitierende Faktor ist.

OC

[​IMG] [​IMG]

Beim Übertakten können wir einen stabilen CPU-Takt von 4,1 GHz mit einer CPU-Spannung von 1,331 Volt erreichen. Den Arbeitsspeichertakt können wir auf 3566 MHz anheben.

[​IMG]

Mit übertakteter CPU und übertaktetem Arbeitsspeicher haben wir einen Cinebench-Run durchgeführt und 1375 Punkte im Multithreading und 171 Punkte im Singethreading erreicht.



[​IMG]

Um zu sehen, ob die Temperaturen der MOSFETs beim Übertakten limitieren, messen wir die Oberflächentemperatur der VRM-Kühler. Mit einer CPU-Spannung von 1,331 Volt, erreichen wir 41° Celsius am heißesten Messpunkt. Der interne VRM-Sensor des Mainboards gibt maximal 50° Celsius aus. Somit dürfte klar sein, dass noch genügend Spielraum für höhere Spannung vorhanden ist und die VRM-Kühlung sehr gut ist.

M.2-Temperatur

[​IMG]

Da das GIGABYTE X470 AORUS GAMING 7 WIFI einen M.2-Kühler bietet, testen wir auch, wie gut dieser die verbaute M.2-SSD kühlt. Dazu verwenden wir CrystalDiskMark 6 und stellen die Dateigröße auf 8 GiB. Ohne Kühler liegen wir bei Temperaturen jenseits der 90° Celsius. Mit M.2-Kühler sinkt die Temperatur auf gute 76° Celsius. Allerdings konnten wir mit anderen M.2-Kühlern, die auf Konkurrenzprodukten verbaut sind, schon bessere Ergebnisse erreichen.

[​IMG]
Der Stromverbrauch liegt im Idle mit eingestelltem Energiesparmodus bei 72,7 Watt. Sobald wir das RYZEN-Profil unter Energieeinstellungen konfigurieren, liegt der Stromverbrauch bei 82,6 Watt. Unter Volllast liegen wir bei guten 158,4 Watt. Mit Übertaktung steigt der Verbrauch deutlich an und liegt bei 221,5 Watt.

Fazit

Mit einem Preis von 230€ richtet sich das GIGABYTE X470 AORUS GAMING 7 WIFI an Enthusiasten, die nicht bei der Ausstattung sparen möchten. Das Design des Mainboards weiß zu gefallen, vor allem die VRM-Kühler sind GIGABYTE sehr gut gelungen. Diese kühlen die MOSFETs ausgezeichnet und sorgen für eine Menge Spielraum bei der Spannungserhöhung. Die verbaute Spannungsversorgung ist mehr als ausreichend, auch wenn es sich nicht, wie von GIGABYTE beworben, um eine echte 10+2-Phasen-Spannungsversorgung handelt. Solange wir mit Luftkühlung oder Wasserkühlung den Prozessor kühlen, kommen wir nicht annähernd an die Grenzen der Spannungsversorgung heran. Die Messergebnisse unserer Tests sind sehr gut und entsprechen unseren Erwartungen. Bei der Montage des CPU-Kühlers könnte es je nach Montageart zu Problemen kommen, die aber mit der Demontage der Mainboard Backplate umgangen werden können. Einen weiteren kleinen Kritikpunkt sehen wir in der Anbindung des zweiten M.2-Slots, da dieser nur mit vier PCI-Express-2.0-Lanes angebunden ist und sich somit langsamer ist als bei der Konkurrenz.

Wir geben dem GIGABYTE X470 AORUS GAMING 7 WIFI 9,5 von 10 Punkten. Damit erhält es den Gold-Award. Des Weiteren verleihen wir den Design Award.

[​IMG]

PRO
+ Design
+ VRM-Kühlung
+ Spannungsversorgung
+ Zwei M.2-Kühler
+ Viele USB-Anschlüsse
+ Dual-BIOS

NEUTRAL
° Probleme bei Kühlermontage mit Backplate möglich

KONTRA
– Geschwindigkeit des zweiten M.2-Slots

[​IMG] [​IMG]

Wertung: 9.5/10

Produktlink
Preisvergleich

Kategorien
Der Tag im Überblick: Alle Meldungen

Gigabyte betritt den Speichermarkt mit AORUS RGB DDR4 DRAM

Um seine Marke AORUS weiter auf andere PC-kritische Komponenten zu erweitern, gibt Gigabyte eine weitere Reihe von eigenen Marken-PC-Komponenten – DDR4-Speichermodule – den letzten Schliff.

Die neuen DDR4-Module, die unter der Gaming-Marke AORUS vertrieben werden, sind mit einem gebürsteten Aluminium-Heatspreader und dem charakteristischen Logo von AORUS ausgestattet. Einige elegante Ausschnitte geben den Modulen ein aggressives Aussehen und die Oberseite des Heatspreaders beherbergt einen RGB-Diffusor, der es den Modulen ermöglicht, gleichmäßig zu leuchten.

Gigabytes sagte, dass das Endprodukt des Aluminiums wahrscheinlich ein paar Nuancen dunkler getönt sehen wird. Eine Preisgestaltung ist uns nicht bekannt.

Quelle: techpowerup

Kategorien
Aktuelle Tests & Specials auf Hardware-Inside Festplatte

Gigabyte Aorus Z370 Gaming 7 -OP – INTEL OPTANE als Spielefestplatte im Test

Das GIGABYTE AORUS Z370 GAMING 7 ist seit Oktober 2017 auf dem Markt erhältlich. Seit Kurzem bietet GIGABYTE dieses auch mit beiliegender INTEL OPTANE an und erweitert den Produktnamen mit dem Kürzel „-OP“. Das GIGABYTE AORUS Z370 GAMING 7 -OP richtet sich vor allem an Käufer, die auf eine Magnetfestplatte als zweiten Massenspeicher setzen und trotzdem den Vorteil einer SSD in Verbindung mit dieser nutzen möchten. Das kann besonders bei einer großen Anzahl an installierten Spielen von Vorteil sein. Der Aufpreis des GIGABYTE AORUS Z370 GAMING 7 -OP zur Standard-Version beträgt 30€. In unserem Test schauen wir uns an, welchen Vorteil uns die beiliegende INTEL OPTANE bietet.

[​IMG]

Bevor wir nun mit dem Test beginnen, danken wir GIGABYTE für die freundliche Bereitstellung des Testsamples und die gute Zusammenarbeit.​

Verpackung, Inhalt, Daten

Verpackung:

[​IMG] [​IMG]

Anders als bei dem standardmäßigen GIGABYTE AORUS Z370 GAMING 7, ist auf der Verpackung des GIGABYTE AORUS Z370 GAMING 7 -OP der Hinweis auf die verbaute INTEL OPTANE zu finden. Auch auf der Produktabbildung auf der Rückseite der Verpackung sehen wir die „OPTANE“-Bezeichnung auf dem M.2-Kühler.

Besonderer Lieferumfang -INTEL OPTANE-:

[​IMG]

Wie zuvor auf der Produktabbildung zu sehen war, ist die INTEL OPTANE auf dem Mainboard vorinstalliert. Diese wird passiv von einem M.2-Kühler auf niedrigen Temperaturen gehalten.

[​IMG]

Unter dem M.2-Kühler befindet sich die INTEL OPTANE mit ihrem typisch blauen PCB. GIGABYTE verbaut eine INTEL OPTANE mit 32 GB Speicherplatz.


Technische Daten:

[​IMG]

Im Detail

[​IMG] [​IMG]

Um uns die OPTANE genauer anzuschauen, entnehmen wir diese aus dem M.2-Slot. Sie ist mit zwei PCI-Express-3.0-Lanes an den verbauten INTEL Z370-Chipsatz angebunden. Das können wir auch an dem M-Key-Anschluss erkennen.

[​IMG] [​IMG]

Gekühlt wird die verbaute INTEL OPTANE von einem vorinstallierten M.2-Kühler.

Praxistest 

[​IMG]

Auf dem GIGABYTE AORUS Z370 GAMING 7 verbauen wir einen INTEL Core i7-8700K und ein 16 GB Arbeitsspeicher-Kit. Des Weiteren kommt eine M.2-SSD von Samsung zum Einsatz. Alle Anwendungen werden auf der Hybridfestplatte (INTEL OPTANE + Seagate BarraCuda) gespeichert. Wir testen alle Konfigurationen mit und ohne OPTANE MEMORY, um einen aussagekräftigen Vergleichswert zu erhalten.

[​IMG] [​IMG]

Bei der Magnetfestplatte setzen wir auf eine Seagate BarraCuda mit 3 TB Speicher.

[​IMG]

Bevor wir loslegen können, müssen wir in der Intel Rapid Storage Technology Software den INTEL OPTANE Arbeitsspeicher aktivieren. Falls gewünscht, können wir diesen auch wieder deaktivieren. Sollte die verbaute INTEL OPTANE schon mal mit einer Festplatte aktiviert worden sein, müssen wir die INTEL OPTANE vollständig formatieren, damit diese ohne Probleme aktiviert werden kann.

[​IMG]

Die Ergebnisse im ATTO Disk Benchmark sprechen ganz klar für die INTEL OPTANE. Ohne OPTANE weist die Seagate BarraCuda einige Leistungseinbrüche und eine deutlich geringere Lese- und Schreibleistung vor. Mit eingebundener INTEL OPTANE sind die Ergebnisse merklich konstanter und schneller. So erreichen wir eine maximale Leserate von 1400 MB/s, ohne sind es maximal nur 175 MB/s.

[​IMG]

Auch in CrystalDiskMark sind die Ergebnisse eindeutig. Vor allem in den kleinen 4 Kilobyte Bereichen bricht die Seagate BarraCuda ohne OPTANE bei der Bandbreite ein. Mit OPTANE erreichen wir mit 143 MB/s den schlechtesten Wert und mit 1404.1 MB/s den besten Wert.

[​IMG]

Wichtiger als Benchmarks ist die Praxis. Auch hier zeigen sich ganz klar die Vorteile der INTEL OPTANE als Zwischenspeicher. So verringert sich beim Starten verschiedener Spiele die Ladezeit. Den größten Unterschied messen wir bei dem Spiel War Thunder. Hier sind es 8.4 Sekunden, die wir uns sparen. Rise of the Tomb Raider zeigt kaum Unterschiede, da keine großen Dateien zum Starten des Spiels benötigt werden. Allerdings müssen wir das Spiel einmal gestartet haben, um von diesen Vorteilen profitieren zu können, da die Dateien des Spiels erst auf der INTEL OPTANE gespeicher werden müssen.

[​IMG]

Noch wichtiger als der Start des Spiels ist die Ladezeit vom Menü ins Spielgeschehen. Da hier größere Daten als beim Spielstart geladen werden, fallen die Unterschiede deutlich größer aus. Dabei zeigt sich, wie stark der Vorteil mit eingebundener INTEL OPTANE ist. Den größten Unterschied messen wir bei Prey. Hier sinkt die Ladezeit von 54 Sekunden auf 12,3 Sekunden. In Playersunknow’s Battlegrounds benötigen wir ohne OPTANE 30,8 Sekunden, um im Spielgeschehen zu sein. Mit OPTANE brauchen wir nur noch 6,6 Sekunden. Auch Rise of the Tomb Raider profitiert stark von der OPTANE. Die Ladezeit sinkt von 25 auf 9 Sekunden. Den geringsten Unterschied messen wir in Battlefield 1.

Fazit

Das GIGABYTE AORUS Z370 GAMING 7 -OP kostet aktuell circa 30€ mehr als die non -OP Version. Damit liegt der Preis der mitgelieferten INTEL OPTANE bei circa der Hälfte ihres Einzelhandelspreises. In den meisten Systemen wird Windows auf einer SSD installiert. SSDs mit viel Kapazität sind zwar günstiger geworden, aber immer noch deutlich teurer als eine Magnetfestplatte mit gleicher Kapazität. Allerdings ist Letztere auch deutlich langsamer. Mit Hilfe der INTEL OPTANE lässt sich, wie an unseren Ergebnissen zu erkennen ist, Abhilfe schaffen. Vor allem bei den Ladezeiten von Spielen wird erkenntlich, wo die Vorteile einer solchen Hybrid-Lösung liegen. Allerdings müssen wir auch erwähnen, dass das Installieren von Spielen sich mit INTEL OPTANE nicht beschleunigt, da die Magnetfestplatte hier den Flaschenhals bildet.
Wir vergeben daher der zusätzlich im Lieferumfang enthaltenen INTEL OPTANE 8.6 von 10 Punkten.

[​IMG]

PRO
+ Geschwindigkeit
+ Installationsprozess
+ Preis für zusätzliche INTEL OPTANE
+ Preis pro Gigabyte-Speicherplatz

KONTRA
– Dauer der Installation

[​IMG]

Wertung: 8.6/10

Herstellerlink 
Preisvergleich

Kategorien
Der Tag im Überblick: Alle Meldungen

Gigabyte stellt seine GeForce GTX 1050 3GB OC Grafikkarte vor

Wir sind von den Gerüchten der etwas enttäuschenden Spezifikationen der neuen gelisteten NVIDIA GPU GTX 1050 3GB überrascht worden, doch jetzt befindet sich tatsächlich ein AIB-Produkt im Umlauf, welches die Ladenregale füllen soll.

Gigabyte scheint der erste NVIDIA-Partner mit einer eigenen Version der NVIDIA GeForce GTX 1050 3 GB Grafikkarte zu sein.
Die neue GTX 1050 3G ist eine günstige Grafikkarte, welche in ihren ursprünglichen Spezifikationen verändert wurde, aber trotzdem mehr als nur ein kleine Rolle unter den Grafikkarten spielt. Ob die Leistung durch die 96-Bit-Busbreite der neuen NVIDIA-Grafikkarte stark beeinträchtigt wird, bleibt abzuwarten (es kann aber nicht gut für die Performance sein, oder?). NVIDIA hat sogar mit einer höheren Kernanzahl und Taktrate die ohnehin schon knappe Speicherbandbreite bereits kompensiert.

Gigabyte hat, indem sie der eigenen Version der Grafikkarte einen weiteren kleinen OC hinzufügte, eine Erhöhung von bis zu 1582 MHz (1417 MHz Basis und 1556 MHz Boost im Gaming Modus), zusätzlich die Performance nach oben geschraubt. Gigabyte verwendet seinen patentierten Windforce 2X Kühler mit 2x 80 mm Lüftern, um die Karte kühl zu halten und die maximale Boost-Fähigkeit im OC-Mode von 1582 MHz zu ermöglichen. Die Anschlüsse umfassen 1x DVI-D, 1x HDMI 2.0b und 1x DisplayPort 1.4 Port (bis zu drei gleichzeitige Anzeigen werden unterstützt).

Quelle: techpowerup

Kategorien
Der Tag im Überblick: Alle Meldungen

Gigabyte betritt den Speicher-Markt mit SSDs der UD PRO-Serie

Der Motherboard-Hersteller Gigabyte bringt jetzt seine Solid-State-Laufwerke der UD PRO-Serie auf den Markt. Dies ist das erste Mal, dass der Hersteller Speicherplatz vermarktet. Obwohl es nicht ihr erster Versuch ist, ihr Portfolio zu diversifizieren, haben sie in den letzten Jahren damit begonnen, sich auf Gehäuse, Kühlung und sogar Stromversorgung auszudehnen. Die UD-Bezeichnung kommt von ihrem „Ultra Durable“-Motherboard-Branding und macht einfach Sinn, es auf andere Produkte zu übertragen.

Wie gut funktioniert die SSD?
Diese neuen UD PRO SSDs sind im 2.5″ SATA-Format und mit 256 GB und 512 GB Speicherkapazität erhältlich. Laut Anandtech wird ein Phison PS3110 S10 mit Toshibas 3D TLC NAND und einem DDR3L SDRAM-Cache verwendet. Die 512GB-Version erreicht sequentielle Lesegeschwindigkeiten von bis zu 530MB/s. Der DRAM-Puffer ermöglicht signifikante anhaltende durchschnittliche IOPS bei 4K-Zufallsschreibvorgängen auf der gesamten Festplatte. Bis zu 16x im Vergleich zu DRAM-losen Laufwerken. Insbesondere erreicht die 512GB Version bis zu 80K random read IOPS und 75K random write IOPS.

Bezogen auf die Lebensdauer haben sie eine MTBF von 1.800.000 Stunden. Außerdem hat die Version mit 256 GB Kapazität eine 100 TB Total-Bytes Written-Grenze, während die 512 GB mit 200 TBW doppelt so viel „Speicherplatz-Umschlag“ ermöglicht.

Was kosten die Gigabyte UD PRO SSDs?
Das 256GB Modell beginnt bei nur 69$, während das 512GB Modell 120$ kostet. Beide haben drei Jahre Garantie.

Quelle: Gigabyte Enters the Storage Market with UD PRO Series SSDs | eTeknix

Die mobile Version verlassen